Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Distribución de Burr XII con datos truncados y censurados: Estimación de máxima verosimilitud basada en Método de Newton-Raphson

Resumen

Este trabajo muestra una metodología para estimar por máxima verosimilitud (ML) los parámetros de una distribución Burr XII cuando los datos son simultáneamente truncados por la izquierda y censurados por la derecha. Dado que las ecuaciones de ML no tienen solución definitiva en estas condiciones, se considera un procedimiento iterativo basado en el método de Newton-Raphson. La coincidencia de percentiles se utiliza para establecer valores iniciales en el algoritmo. Los resultados basados en simulaciones y análisis de datos reales indican que la alternativa propuesta tiene un buen desempeño.

Palabras clave

Distribución Burr XII, datos censurados, datos truncados, máxima verosimilitud

PDF

Citas

  1. Burr I. Cumulative frequency functions. Annals of Mathematical Statistics. 1942; 2(13): 215-232.
  2. Hogg R, Klugman S. Loss Distributions. New York: John Wiley & Sons; 2009.
  3. Klugman S, Panjer H, Willmot G. Loss Models: From Data to Decisions. New York: John Wiley &
  4. Sons; 2012.
  5. Embrechts P, Klüppelberg C, Mikosch T. Modelling Extremal Events: for Insurance and Finance. New
  6. York: Springer Science & Business Media; 2013.
  7. Albrecher H, Beirlant J, Teugels J. Actuarial and Statistical Aspect. New York: John Wiley & Sons;
  8. Zimmer W, Keats J, Wang, F. The Burr XII distribution in reliability analysis. Journal of Quality
  9. Technology. 1998; 30(4):386-394.
  10. Rao G, Aslam M, Kundu D. Burr-XII distribution parametric estimation and estimation of reliability of
  11. multicomponent stress-strength. Communications in Statistics-Theory and Methods. 2015; 44(23):4953–
  12. Wingo D. Maximum likelihood methods for fitting the Burr type XII distribution to life test data.
  13. Biometrical Journal. 1983; 25(1):77-84.
  14. Shao Q, Zhou X. A new parametric model for survival data with long-term survivor. Statistics in
  15. Medicine. 2004; 23(22):3525-3543.
  16. Kleiber C, Kotz S. Statistical Size Distributions in Economics and Actuarial Sciences. New York: John
  17. Wiley & Sons; 2003.
  18. Beirlant J, Goegebeur Y, Verlaak R, Vynckier P. Burr regression and portfolio segmentation. Insurance:
  19. Mathematics and Economics. 1998; 23(3):231-250.
  20. Yourstone S, ZimmerW. Non-normality and the design of control charts for averages. Decision Sciences.
  21. ; 23(5):1099-1113.
  22. Chou C, Chen C, Liu H. Acceptance control charts for non-normal data. Journal of Applied Statistics.
  23. ; 32(1):25-36.
  24. Wingo D. Maximum likelihood methods for fitting the Burr type XII distribution to multiply (progressively)
  25. censored life test data. Metrika. 1993; 40(1):203-210.
  26. Wang F, Keats J, Zimmer W. Maximum likelihood estimation of the Burr XII parameters with censored
  27. and uncensored data. Microelectronics Reliability. 1996; 36(3):359-362.
  28. Ghitany M, Al-Awadhi S. Maximum likelihood estimation of Burr XII distribution parameters under
  29. random censoring. Journal of Applied Statistics. 2002; 29(7):955-965.
  30. A. Abuzaid. The estimation of the Burr-XII parameters with middle-censored data. SpringerPlus vol. 4,
  31. no. 1, pp 1-10, 2015.
  32. Aslam M, Mahmood Y, Lio Y, Tsai T, Khan M. Double acceptance sampling plans for Burr type XII
  33. distribution percentiles under the truncated life test. Journal of the Operational Research Society. 2012;
  34. (7):1010-1017.
  35. Tsai T, Lio Y, Jiang N, Lin Y, Fan Y. Economical sampling plans with warranty based on truncated data
  36. from Burr type XII distribution. Journal of the Operational Research Society. 2015; 66(9):1511-1518.
  37. Balakrishnan N, Mitra D. Left truncated and right censored Weibull data and likelihood inference with
  38. an illustration. Computational Statistics & Data Analysis. 2012; 56(12):4011-4025.
  39. Balakrishnan N, Mitra D. EM-based likelihood inference for some lifetime distributions based on left
  40. truncated and right censored data and associated model discrimination. South African Statistical Journal.
  41. ; 48(12):125-171.
  42. Kundu D, Mitra D. A. Analysis of left truncated and right censored competing risks data. Computational
  43. Statistics & Data Analysis. 2017; 108:12-26.
  44. Kundu D, Mitra D. Statistical inference based on left truncated and interval censored data from loglocation-
  45. scale family of distributions. Communications in Statistics Simulation and Computation. 2021;
  46. (4):1073-1093.
  47. Afify A, Cordeiro G, Ortega E, Yousof H, Butt N. The four-parameter Burr XII distribution: Properties,
  48. regression model, and applications. Communications in Statistics-Theory and Methods. 2018;
  49. (11):2605-2624.
  50. Paranaíba P, Ortega E, Cordeiro G, Pascoa M. The Kumaraswamy Burr XII distribution: theory and
  51. practice. Journal of Statistical Computation and Simulation. 2021; 83(11):2117-2143.
  52. Olapade A. On a six-parameter generalized Burr XII distribution. arXiv preprint 0806.1579:1–8.
  53. El-Bassiouny A, Abdo N. Reliability properties of seven parameters Burr XII distribution. Computational
  54. Methods in Science and Technology. 2010; 16:127-133.
  55. Adeyemi S, Adebanji A. Moments of order statistics from doubly truncated Burr XII distribution: A
  56. complementary note with applications. Journal of Statistical Research. 2015; 41(1):37-50.
  57. Gomes A, da-Silva C, Cordeiro, G. Two extended Burr models: Theory and practice. Journal of Applied
  58. Statistics. 2015; 44(8):1706-1734.
  59. Mead M. A new generalization of Burr XII distribution. Journal of Statistics: Advances in Theory and
  60. Applications. 2014; 12(2):53-73.
  61. Lanjoni B, Ortega E, Cordeiro G. Extended Burr XII regression models: theory and applications. Journal
  62. of Agricultural, Biological, and Environmental Statistics. 2016; 21(1):203-224.
  63. Shakhatreh M, Al-Masri A. On the weighted Burr XII distribution: theory and practice. Electronic
  64. Journal of Applied Statistical Analysis. 2015; 13(1):229-255.
  65. Süli E, Mayers, D. An Introduction to Numerical Analysis. 2003, Cambridge University Press.
  66. Efron B, Hinkley, D. Assessing the accuracy of the maximum likelihood estimator: Observed versus
  67. expected Fisher information. Biometrika. 1978; 65(3): 457-483
  68. Watkins, A. A note on expected fisher information for the Burr XII distribution. Microelectronics
  69. Reliability. 1997; 37(12), 1849-1852.
  70. Brazauskas, V. Information matrix for Pareto (IV), Burr, and related distributions. Communications in
  71. Statistics-Theory and Methods. 2003; 32(2), 315-325.
  72. Dutang C, Goulet V, Pigeon M. actuar: An R package for actuarial science, Journal of Statistical
  73. Software. 2008; 25(7):1-37.
  74. R Core Team. R. A Language and Environment for Statistical Computing. R Foundation for Statistical
  75. Computing. 2018; https://www.R-project.org/.
  76. Okasha M, Matter M. On the three-parameter Burr type XII distribution and its application to heavy
  77. tailed lifetime data. Journal of Statistics: Advances in Theory and Applications. 2014; 12(2):53-73.
  78. Lee E, Wang, J. Statistical Methods for Survival Data Analysis. 2003, ohn Wiley & Sons.
  79. Al-Shomrani A, Shawky A, Arif O, Aslam, M. Log-logistic Distribution for Survival Data Analysis
  80. Using MCMC. SpringerPlus. 2016; 5:1-16.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.