Skip to main navigation menu Skip to main content Skip to site footer

Effects of the incoherent pumping in the linear optical susceptibility of an spherical nanostructure

Abstract

The effects of incoherent exciton pumping on a semiconductor nanostructure with spherical geometry that interacts with monochromatic light are studied. The dissipative processes of spontaneous emission and dephasing were considered through the formalism of open quantum systems, using a master equation with Lindblad terms, where incoherent pumping is also included. The perturbative expansion technique was used on the density operator applied on the polarization operator. An expression of linear optical sus- ceptibility was obtained in a nanostructure that includes incoherent pumping. In addition, it was found that the incoherent pumping of excitons does not affect the energetic separation of the levels of the quantum system.

Keywords

Incoherent pumping, Nanostructure, Master equation, Optical Susceptibility

PDF (Español)

References

  1. P.N. Butcher, N. H. March y M. P. Tosi, “Phy- sics of low-dimensional semiconductor struc- tures”. Springer Science & Business Media, 2013.
  2. P.Harrison,“Quantumwells,wiresanddots”, Wiley, 2016.
  3. A. Beveratos, I. Abram, J. M. Gérard y I. Robert-Philip, “Quantum optics with quan- tum dots”, The European Physical Journal D, vol.68, no.12, pp.1-14, 2014. DOI: https://doi.org/10.1140/epjd/e2014-50717-x
  4. N. Zeiri, A. Naifar, S. Nasrallah y M. Said, Third nonlinear optical susceptibility of CdS/ZnS core-shell spherical quantum dots for optoelectronic devices, Optik-International Journal for Light and Electron Optics, vol. 176, no. 1, pp. 162-167, 2019. DOI: https://doi.org/10.1016/j.ijleo.2018.09.050
  5. D. Loss, D. DiVincenzo, “Quantum compu- tation with quantum dots”, Phys. Rev. A, vol. 57, no.1, pp. 120-126, 1998. DOI: https://doi.org/10.1103/PhysRevA.57.120
  6. M.Choubani,H.MaarefyF.Saidi,“Nonlinear optical properties of lens-shaped core/shell quantum dots coupled with a wetting layer: effects of transverse electric field, pressure, and temperature”, J. Phys. Chem. Solid, vol. 138, no.3, pp. 109226, 2020. DOI: https://doi.org/10.1016/j.jpcs.2019.109226
  7. H. Bahramiyan, “Strain effect on the third- harmonic generation of a two-dimensional GaAs quantum dot in the presence of magnetic field and spin-orbit interaction”, Indian J. Phys., vol. 94, no. 6, pp. 789-796, 2020. DOI: https://doi.org/10.1007/s12648-019-01525-4
  8. H.P. Breuer y F. Petruccione. “The theory of open quantum systems”. Oxford University Press on Demand, 2002. DOI: https://doi.org/10.1007/3-540-44874-8_4
  9. H. Carmichael. “An open systems approach to quantum optics: lectures presented at the Uni- versité Libre de Bruxelles, October 28 to No- vember 4, 1991”. Springer Science & Business Me- dia, 2009.
  10. G. Wang, “Highly efficient third-harmonic generation from resonant intersubband transitions in core/shell spherical quantum dots”. Optics Communications, vol. 355, no.11, pp. 1-5, 2015. DOI: https://doi.org/10.1016/j.optcom.2015.06.045
  11. A. A.Portacio, B. A. Rodríguez y P. Villamil, “Theoretical study on optical response in na-
  12. nostructures in the Born Markov regime: The role of spontaneous emission and dephasing”, Annals of Physics, vol. 400, no. 1, pp. 279-288, 2019. DOI: https://doi.org/10.1016/j.aop.2018.11.023
  13. A. A. Portacio, L. E. Cano y D. A. Rasero, “Opti- cal Rectification in Self-Assembled Quantum Dots: The Role of Incoherent Pumping”, Superlattices and Microstructures, vol. 156, no.8, pp. 106937, 2021. DOI: https://doi.org/10.1016/j.spmi.2021.106937
  14. E. Kasapoglu, C. Duque, M.Mora-Ramos y I. Sökmen, “The effects of the intense laser field on the nonlinear optical properties of a cylindrical Ga1-xAlxAs/GaAs quantum dot un- der applied electric field”, Physica B: Condensed Matter, vol.474, no.10, pp.15-20, 2015. DOI: https://doi.org/10.1016/j.physb.2015.06.004
  15. M.Sahrai,S.H.AsadpouryR.Sadighi-Bonabi, “Optical bistability via quantum interferen- ce from incoherent pumping and spontaneo- us emission”, Journal of Luminescence, vol.131, DOI: https://doi.org/10.1016/j.jlumin.2011.05.059
  16. no.11, pp.2395-2399, 2011.

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.