Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Numfracpy, Técnicas del C´álculo Fraccionario en Python

Resumen

En este trabajo se introduce una librería en el lenguaje Python que implementa técnicas propias del cálculo
fraccionario. Este tipo de cálculo ha visto un incremento notable de sus aplicaciones en diversas áreas de
las ciencias en las últimas décadas. Sin embargo, el tipo de cálculos que se necesitan para su desarrollo no
son simples y no hay muchas ayudas computacionales para su implementación, especialmente en Python.
Numfracpy se encuentra disponible al público en el índice de paquetes PyPI (Python Package Index) e
implementa diversos conceptos del cálculo fraccionario como lo son: La integral y la derivada de Riemann-
Liouville, la derivada de Caputo, la derivada de Grünwald-Letnikov, las funciones de Mittag-Leffler, la
solución numérica de un tipo de ecuación diferencial en derivadas fraccionarias y un sistema de tales
ecuaciones diferenciales. En este trabajo se presentan varios algoritmos implementados y los resultados
obtenidos se comparan con aquellos reportados en la literatura, encontrando una buena aproximación en los
diferentes ejemplos ilustrados.

Palabras clave

Cálculo Fraccionario, Caputo, Grünwald-Letnikov, Métodos Numéricos, Python, Riemann-Liouville


Citas

  1. B. Ross, “The development of fractional calculus 1695 -1900”, Historia Mathematica, vol. 4, no. 1, pp. 75 - 89, 1977. doi:10.1016/0315-0860(77)90039-8.
  2. N.H. Abel, L. Sylow and S. Lie “Solution de quelques problémes á láide díntégrales définies”, Oeuvres complétes de Niels Henrik Abel, pp. 11 - 27, 2012.doi:10.1017/cbo9781139245807.003.
  3. I. Podlubny, R. L. Magin, and I. Trymorush, “Niels Henrik Abel and the birth of fractional calculus”, Fractional
  4. Calculus and Applied Analysis, vol. 20, no. 5, pp. 1068-1075, 2017. doi:10.1515/fca-2017-0057.
  5. J. Liouville, “Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul
  6. pour résoudre ces questions”, Journal de l’École Polytechnique, Paris, 13: 1-69. 1832.
  7. J. Liouville, “Mémoire sur le calcul des différentielles á indices quelconques”, Journal de l’École Polytechnique,Paris, 13: 71-162. 1832.
  8. K. Oldham and J. Spanier, “The fractional calculus theory and applications of differentiation and integration to arbitrary
  9. order”. Elsevier, 1974.
  10. I. Podlubny, “Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications”. Elsevier, 1998.
  11. G. Sales Teodoro, J. A. Tenreiro Machado, and E. Capelas de Oliveira, “A review of definitions of fractional derivatives and other operators”, Journal of Computational Physics, vol. 388, pp. 195-208, 2019.
  12. doi:10.1016/j.jcp.2019.03.008.
  13. J. T. Machado, V. Kiryakova, and F. Mainardi, “Recent history of fractional calculus”, Communications in Nonlinear
  14. Science and Numerical Simulation, vol. 16, no. 3, pp. 1140-1153, 2011. doi:10.1016/j.cnsns.2010.05.027.
  15. J. A. Tenreiro Machado et al., “Some applications of fractional calculus in engineering”, Mathematical
  16. Problems in Engineering, vol. 2010, pp. 1-34, 2010. doi:10.1155/2010/639801.
  17. R. C. Koeller, “Applications of fractional calculus to the theory of viscoelasticity”, Journal of Applied Mechanics, vol. 51, no. 2, pp. 299-307, 1984.doi:10.1115/1.3167616.
  18. J. F. Reverey et al., “Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of
  19. pathogenic Acanthamoeba castellanii” Scientific Reports, vol. 5, no. 1, 2015. doi:10.1038/srep11690.
  20. N. Challamel and T. M. Atanackovic, “Fractional Calculus with Applications in Mechanics: Wave Propagation,
  21. Impact and Variational Principles”. John Wiley and Sons Incorporated, 2014.
  22. S. Holm and S.P. Näsholm. “A causal and fractional allfrequency wave equation for lossy media”. The Journal of the Acoustical Society of America, 130(4), pp. 2195-2202, 2011.
  23. F. Ciuchi, A. Mazzulla, N. Scaramuzza, E.K. Lenzi and L.R. Evangelista. “Fractional diffusion equation and the
  24. electrical impedance: Experimental evidence in liquidcrystalline cells”. The Journal of Physical Chemistry C, 116(15), 8773-8777, 2012.
  25. P.D. Mandi´c, T.B. Sekara, M.P. Lazarevi´c, and m. Boskovi ´c. “Dominant pole placement with fractional order PID
  26. controllers: D-decomposition approach”. ISA transactions, 67, 76-86, 2017.
  27. J. Zhang, Z. Wei, and L. Xiao, L. “Adaptive fractionalorder multi-scale method for image denoising”. Journal of Mathematical Imaging and Vision, 43, 39-49, 2012.
  28. H. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y. Chen, “A new collection of real world applications of fractional
  29. calculus in Science and Engineering”, Communications in Nonlinear Science and Numerical Simulation, vol. 64,
  30. pp. 213-231, 2018. doi:10.1016/j.cnsns.2018.04.019.
  31. V. Tarasov, “On history of mathematical economics: Application of fractional calculus”, Mathematics, vol. 7, no. 6, p. 509, 2019. doi:10.3390/math7060509.
  32. Z. Li, L. Liu, S. Dehghan, Y. Chen, and D. Xue, “A review and evaluation of numerical tools for fractional calculus and Fractional Order controls”, International Journal of Control, vol. 90, no. 6, pp. 1165-1181, 2016. doi:10.1080/00207179.2015.1124290.
  33. R. Garrappa, “Numerical solution of fractional differential equations: A survey and a software tutorial”, Mathematics, vol. 6, no. 2, p. 16, 2018. doi:10.3390/math6020016
  34. R. Marazzato and A. C. Sparavigna. “Astronomical image processing based on fractional calculus: the AstroFracTool.” arXiv preprint arXiv:0910.4637, 2009.
  35. T. Onyedi, A. Tepljakov, and E. Petlenkov, “Fomconpy: Fractional-order modelling and Control Library for python”, 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), 2020. doi:10.1109/tsp49548.2020.9163581.
  36. T. Dasgupta and M. Maitra, “An extremely fast and accurate fractional order differentiator” in 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1-4, July,2017.
  37. T. Midya, D. Garai, and T. Dasgupta, “A fast and accurate module for calculating fractional order derivatives and integrals in Python”, 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2018. doi:10.1109/icccnt.2018.8494055.
  38. M. Adams, “differint: A Python Package for Numerical Fractional Calculus”, arXiv:1912.05303 [cs.MS], December,
  39. , doi:10.48550/arXiv.1912.05303.
  40. R. Garrappa, “Numerical evaluation of two and three parameter Mittag-Leffler functions”, SIAM Journal on Numerical Analysis, 53(3), pp. 1350-1369, 2015, doi:10.1137/140971191.
  41. R. Herrmann, “Fractional calculus: an introduction for physicists”. World Scientific Publishing, 2018.
  42. S. Chapra, “Numerical methods for engineers”. Mcgrawhill, 2010.
  43. R. Hamming, “Numerical methods for scientists and engineers”. Courier Corporation, 2012.
  44. E. Isaacson and H. B. Keller, “Analysis of numerical methods”. Dover Publications, 1994.
  45. P. J. Davis and P. Rabinowitz, “Methods of numerical integration”. Dover Publications, 2007.
  46. Scipy, Disponible en https://scipy.org/ (accessed March 7, 2024).
  47. QUADPACK, Disponible en https://en.wikipedia.org /wiki/ QUADPACK (accessed March 7, 2024)
  48. C. Li and F. Zeng. “Numerical methods for fractional calculus”. CRC Press, 2015.
  49. T. A. M. Langlands, and B. I. Henry. “The accuracy and stability of an implicit solution method for the fractional diffusion equation.” Journal of Computational Physics 205.2, pp 719-736, 2005, doi: 10.1016/j.jcp.2004.11.025
  50. F. Zeng and C. “A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation”. Applied Numerical Mathematics 121, pp: 82-95, doi:10.1016/j.apnum.2017.06.011
  51. Saeed. Fractional calculus 03 Riemann Liouville fractional integral dr saeed, YouTube. Disponible en https://www.youtube.com/watch?v=lHMScG219P4&list =RDCMU COjjhlMi0O2WSIPEn9TDZ5Q&index=2 (Accessed: March 7 2024).
  52. K. Diethelm and N. J. Ford, “Analysis of fractional differential equations”, Journal of Mathematical Analysis and Applications, 265(2), pp. 229-248, 2002, doi:10.1006/jmaa.2000.7194.
  53. D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo. “Fractional calculus: models and numerical methods”. Vol. 3. World Scientific, 2012.
  54. K. Khinsen. Khinsen/Mittag-Leffler: The generalized mittag-leffler in Python, GitHub. Disponible en https://github.com/khinsen/mittag-leffler (Accessed: March 7 2024).
  55. K. Diethelm, N. J. Ford, A. D. Freed, and Y. Luchko, “Algorithms for the fractional calculus: A selection of numerical methods”, Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 6-8, pp. 743-773, Feb. 2005, doi: 10.1016/j.cma.2004.06.006.
  56. K. Diethelm and A. D. Freed, “On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity”, in Springer eBooks, 1999, pp. 217-224. doi: 10.1007/978-3-642-60185-9_24.
  57. P. J. Torvik and R. L. Bagley (1984) “On the appearance of the fractional derivative in the behavior of real materials”, Journal of Applied Mechanics, 51(2), pp. 294-298, Jun. 1984, doi:10.1115/1.3167615.
  58. K. Diethelm and J. Ford, “Numerical solution of the Bagley-Torvik equation”, BIT NumericalMathematics, vol. 42, no. 3, pp. 490-507, 2002. doi:10.1023/a:1021973025166.
  59. M.G. Sakar, O. Saldir and A. Akgül, A, “Novel Technique for Fractional Bagley-Torvik Equation”. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 89, pp. 539-545, 2019. doi:10.1007/s40010-018-0488-4.
  60. “Build software better, together”, GitHub. Disponible en https://github.com/topics/fractional-calculus (accessed
  61. March 7 2024).

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.