Efectos en la reactividad con temperatura de retroalimentación
Resumen
Diferentes simulaciones numéricas para el cálculo de la reactividad con efecto de temperatura de retroalimentación se presentan en este trabajo. Se considera la aproximación de la serie de Euler-Maclaurin con el segundo número de Bernoulli para discretizar la ecuación inversa de la cinética puntual. El efecto Doppler se considera con dependencia de la temperatura de retroalimentación, la cual se calcula recursivamente a partir de un valor inicial. Se realizan diferentes experimentos numéricos con diferentes pasos de cálculo, tiempos de simulación y formas de la densidad de la población de neutrones para validar el método propuesto.
Palabras clave
Simulación numérica, Densidad de neutrones, Reactividad, Temperatura de retroalimentación
Biografía del autor/a
Daniel
Físico, MSc en Física de la Universidad Industrial de Santander, Doctor en Física de reactores nucleares de la Universidad Federal de Rio de Janeiro. Sus intereses de investigación incluyen la dinámica de reactores nucleares, el cálculo de la reactividad nuclear.
Geraldyne
Física de la Universidad Surcolombiana, magister en Física Médica de la Universidad de Valencia, España. Es becaria del programa Marie Sklodowska Curie del Organismo internacional de Energía Atómica (OIEA). Con experiencia en investigación en el departamento de Aplicaciones Nucleares en la Salud Humana, laboratorio de dosimetría igualmente en el OIEA. Actualmente estudia su doctorado (PhD) en Física en la Universidad de Bangor, Gales, con una beca del Laboratorio Nacional Nuclear (NNL) del Reino Unido.
Jesús A
Jesús Antonio Chala Casanova es egresado de física en la Universidad Surcolombiana (Neiva, Colombia). Sus intereses de investigación incluyen la dinámica de reactores nucleares, el cálculo de la reactividad nuclear, la densidad de neutrones y, en particular, el diseño de herramientas teóricas y computacionales para la resolución de problemas de física nuclear. Es investigador del departamento de Ciencias Naturales de la Universidad Surcolombiana. https://orcid.org/0000-0001-8609-0518
Citas
- Stacey,W.NuclearReactorPhysics.(Wiley-VCH,2018)
- Duderstadt,J.&Hamilton,L.NuclearReactorAnalysis. (John Wiley & Sons Inc,1976)
- Shimazu, Y., Nakano, Y., Tahara, Y. & Okayama, T. De- velopment of a Compact Digital Reactivity Meter and a Reactor Physics Data Processor.. Nuclear Technology. 77, 247-254 (1987)
- Hoogenboom, J. & Sluijs, A. Neutron source strength determination for on-line reactivity measurements. Annals Of Nuclear Energy. 15, 553-559 (1988,1)
- Binney, S. & Bakir, A. Design and Development of a Personal-Computer-Based Reactivity Meter for a Re- search Reactor. Nuclear Technology. 85, 12-21 (1989,4)
- Ansari, S. Development of on-line reactivity meter for nuclear reactors. IEEE Transactions On Nuclear Science. 38, 946-952 (1991,8)
- Kitano, A., Itagaki, M. & Narita, M. Memorial-Index- Based Inverse Kinetics Method for Continuous Measu- rement of Reactivity and Source Strength. Journal Of Nuclear Science And Technology. 37, 53-59 (2000,1)
- Tamura, S. Signal fluctuation and neutron source in in- verse kinetics method for reactivity measurement in the sub-critical domain. Journal Of Nuclear Science And Tech- nology. 40, 153-157 (2003)
- Malmir, H. & Vosoughi, N. On-line reacti- vity calculation using Lagrange method. An- nals Of Nuclear Energy. 62 pp. 463-467 (2013), http://dx.doi.org/10.1016/j.anucene.2013.07.006
- Suescún-Díaz, D., Rodríguez-Sarasty, J. & Figueroa- Jiménez, J. Reactivity calculation using the Euler- Maclaurin formula. Annals Of Nuclear Energy. 53 pp. 104-108 (2013,3)
- Suescún-Díaz, D., Bonilla-Londoño, H. & Figueroa- Jimenez, J. Savitzky-Golay filter for reactivity calculation. Journal Of Nuclear Science And Technology. 53, 944-950 (2016)
- Razak, M. & Rathinasamy, N. Haar wavelet for solving the inverse point kinetics equations and estimation of feedback reactivity coefficient under background noise. Nuclear Engineering And Design. 335 pp. 202-209 (2018,8)
- Picca, P. & Furfaro, R. Reactivity determination using the hybrid transport point kinetics and the area method. Annals Of Nuclear Energy. 114 pp. 191-197 (2018), https://doi.org/10.1016/j.anucene.2017.12.019
- Chentre, N., Saracco, P., Dulla, S. & Ravetto, P. On the prompt time eigenvalue estimation for subcritical mul- tiplying systems. Annals Of Nuclear Energy. 132 pp. 172- 180 (2019), https://doi.org/10.1016/j.anucene.2019.04.030
- Suescún-Díaz, D., Ule-Duque, G. & Escobar, F. Novel approach to solving the inverse equation of point kinetics by the Bernoulli number generalisation method. Journal Of Nuclear Science And Technology. 57, 989-999 (2020), https://doi.org/10.1080/00223131.2020.1742813
- Aboanber,A.&Nahla,A.Solutionofthepointkinetics equations in the presence of Newtonian temperature feed- back by Pad approximations via the analytical inversion
- method. Journal Of Physics A: Mathematical And General. 35, 9609-9627 (2002,11)
- Aboanber,A.&Hamada,Y.Powerseriessolution(PWS) of nuclear reactor dynamics with newtonian temperatu- re feedback. Annals Of Nuclear Energy. 30, 1111-1122 (2003,7)
- Nahla,A.Ananalyticalsolutionforthepointreactorkine- tics equations with one group of delayed neutrons and the adiabatic feedback model. Progress In Nuclear Energy. 51, 124-128 (2009,1)
- Nahla,A.Anefficienttechniqueforthepointreactorki- netics equations with Newtonian temperature feedback ef- fects. Annals Of Nuclear Energy. 38, 2810-2817 (2011,12)
- Hamada,Y.Confirmationofaccuracyofgeneralizedpo- wer series method for the solution of point kinetics equa- tions with feedback. Annals Of Nuclear Energy. 55 pp. 184-193 (2013,5)
- Ganapol,B.Ahighlyaccuratealgorithmforthesolution of the point kinetics equations. Annals Of Nuclear Energy. 62 pp. 564-571 (2013,12)
- Arfken,G.,Weber,H.,&Harris,F.MathematicalMethods for Physicists. (Elsevier Academic Press,2013)
- Haykin, S. & Veen, B. Signals and Systems. (Wiley,2005)