Skip to main navigation menu Skip to main content Skip to site footer

Control Evaluation for a Boost Converter via the PI-PBC \& IOC-PI Theories for Voltage Support in Linear Loads: Numerical validations in PSIM, PLECS, and MATLAB/Simulink

Abstract

This paper presents a comparison of the voltage and current dynamic responses for the Boost converter in three different simulation software, namely PSIM, PLECS, and MATLAB/Simulink, while using two types of nonlinear controllers. The utilized controller designs are (i) proportional-integral passivity-based control (PI-PBC) and (ii) inverse optimal control with PI action (IOC-PI). The main advantage of the PI-PBC and IOC-PI controllers is that both ensure the stable operation of the converter via Lyapunov's stability theory. In addition, in both controllers, integral action enables the elimination of non-modeled dynamics in the converter by allowing it to reach the reference with minimal stabilization times. The results showed that, despite the fact that all utilized simulation software applications had their advantages, the one with the best dynamic response for both nonlinear controls was PSIM. Moreover, it is easier to use for someone who has never worked with a simulation environment. The main objective of this research was to compare simulation software and find the most suitable environment for evaluating and implementing nonlinear control with regard to power electronic converter applications.

PDF (Español)

References

  1. J. P. J. Petinrin y M. S. M. Shaaban, «Overcoming Challenges of Renewable Energy on Future Smart Grid,» TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 10, n.o 2, pág. 229, 2012. DOI:10.12928/telkomnika.v10i2.781.
  2. Erdiwansyah, Mahidin, H. Husin, Nasaruddin, M. Zaki y Muhibbuddin, «A critical review of the integration of renewable energy
  3. sources with various technologies,» inf. téc. 1,2021. DOI: 10.1186/s41601-021-00181-3.
  4. H. Guldemir, «Sliding Mode Control of Dc-Dc Boost Converter,» Journal of Applied Sciences, vol. 5, n.o 3, págs. 588-592, 2005.
  5. DOI: 10.3923/jas.2005.588.592.
  6. R. E. Torres-Olguin, A. Garces y G. Bergna, «HVDC Transmission for Offshore Wind Farms,» en Large Scale Renewable Power Generation. Springer Singapore, 2014, págs. 289-310. DOI: 10. 1007 / 978 - 981 -4585-30-9_11.
  7. N. Mohan, Electrónnica de potencia: convertidores, aplicaciones y diseño. México: McGraw Hill, 2009, ISBN: 9789701072486.
  8. J.-K. Shiau y C.-W. Ma, «Li-Ion Battery Charging with a Buck-Boost Power Converter for a Solar Powered Battery Management System,» Energies, vol. 6, n.o 3, págs. 1669-1699, 2013. DOI: 10 . 3390 /en6031669.
  9. S. D. Mitchell, S. M. Ncube, T. G. Owen y M. H. Rashid, «Applications and market analysis of DC-DC converters,» en 2008
  10. International Conference on Electrical and Computer Engineering, IEEE, 2008. DOI: 10.1109/icece.2008.4769337.
  11. M. Namnabat, M. B. Poodeh y S. Eshtehardiha, «Comparison the control methods in improvement the performance of the DC-DC
  12. converter,» en 2007 7th International Conference on Power Electronics, IEEE, 2007. DOI: 10.1109/icpe.2007.4692386.
  13. H. Li y X. Ye, «Sliding-mode PID control of DC-DC converter,» en 2010 5th IEEE Conference on Industrial Electronics and Applications, IEEE, 2010. DOI: 10.1109/iciea.2010.5516952.
  14. A. A. S. Khan y K. M. Rahman, «Voltage mode control of single phase boost inverter,» 2008. DOI: 10.1109/icece.2008.4769293.
  15. W. Gil-González, O. D. Montoya, C. Restrepo y J. C. Hernández, «Sensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach,» Sensors, vol. 21, n.o 19, pág. 6367, 2021. DOI:
  16. 3390/s21196367.
  17. J. S. Gómez-Chitiva, A. F. Escalante-Sarrias y O. D. Montoya, «Voltage Regulation in Second-Order Dc-Dc Converters Via
  18. the Inverse Optimal Control Design with Proportional-Integral Action,» TecnoLógicas, vol. 25, n.o 55, e2369, 2022. DOI: 10.22430/
  19. 2369.
  20. P. inc., PSIM User’s Guide Version 2020a, 2020. dirección: https : / / www .powersimtech.com/wp-content/uploads/
  21. /01/PSIM-User-Manual.pdf.
  22. P. GmbH, PLECS User Manual Version 4.6.dirección: https://www.plexim.com/files/plecsmanual.pdf.
  23. S. Documentation, Simulation and Model-Based Design, 2020. dirección: https://www.mathworks . com / products / simulink .
  24. html.
  25. A. Devices, LTspice. dirección: https://www.analog.com/en/design- center/design-tools-and-calculators/ltspice-simulator.
  26. html.
  27. S. Khader, A. Hadad y A. A. Abu-aisheh, «The application of PSIM & Matlab/Simulink in power electronics courses,» en 2011 IEEE
  28. Global Engineering Education Conference (EDUCON), IEEE, 2011. DOI: 10 . 1109 /educon.2011.5773124.
  29. D. Baimel, R. Rabinovici y S. Ben-Yakov,«Simulation of thyristor operated induction generator by Simulink, Psim and Plecs,» en
  30. 18th International Conference on Electrical Machines, IEEE, 2008. DOI: 10.1109/icelmach.2008.4799931.
  31. L. Allain, A. Merdassi y L. Gerbaud, «Automatic modelling of Power Electronic Converter, Average model construction and Modelica model generation,» en Linkoping Electronic Conference Proceedings, Linkoping University Electronic Press, 2009. DOI: 10.
  32. /ecp09430092.
  33. Q.-C. Zhong y M. Stefanello, «Port-hamiltonian control of power electronic converters to achieve passivity,» en 2017 IEEE
  34. th Annual Conference on Decision and Control (CDC), IEEE, 2017. DOI: 10.1109/cdc.2017.8264413.
  35. R. Cisneros, M. Pirro, G. Bergna, R. Ortega, G. Ippoliti y M. Molinas, «Global Tracking Passivity-based PI Control of Bilinear
  36. Systems and its Application to the Boost and Modular Multilevel Converters,» IFAC-PapersOnLine, vol. 48, n.o 11, págs. 420-425,
  37. DOI: 10.1016/j.ifacol.2015.09.222.
  38. G. Espinosa-Pérez, «Control de microrredes eléctricas de potencia: un enfoque hamiltoniano,» Revista Iberoamericana de Automática e Informática industrial, vol. 19, n.o 4, págs. 442-451, 2022. DOI: 10 . 4995 / riai.2022.17020.
  39. M. Zhang, P. Borja, R. Ortega, Z. Liu y H. Su, «PID Passivity-Based Control of Port-Hamiltonian Systems,» IEEE Transactions on Automatic Control, vol. 63, n.o 4, págs. 1032-1044, 2018. DOI: 10.1109/tac.2017.2732283.
  40. A. Macchelli, «Passivity-based control of implicit port-Hamiltonian systems,» en 2013 European Control Conference (ECC), IEEE,
  41. DOI: 10.23919/ecc.2013.6669288.
  42. K. F. Krommydas y A. T. Alexandridis, «Design and passivity-based stability analysis of a PI current-mode controller for dc/dc boost
  43. converters,» en 2014 American Control Conference, IEEE, 2014. DOI: 10.1109 / acc .2014.6859156.
  44. K. López-Rodríguez, W. Gil-González y A. Escobar-Mejía, «Design and implementation of a PI-PBC to manage bidirectional power
  45. flow in the DAB of an SST,» Results in Engineering, vol. 14, pág. 100 437, 2022. DOI:10.1016/j.rineng.2022.100437.
  46. F. M. Serra y C. H. D. Angelo, «IDA-PBC controller design for grid-connected Front End Converters under non-ideal grid conditions,» Electric Power Systems Research, vol. 142, págs. 12-19, 2017. DOI: 10.1016/j.epsr.2016.08.041.
  47. H. Ramirez e Y. L. Gorrec, «An Overview on Irreversible Port-Hamiltonian Systems,» Entropy, vol. 24, n.o 10, pág. 1478, 2022. DOI:
  48. 3390/e24101478. [29] W. Gil-González, O. D. Montoya y G. Espinosa-Perez, «Adaptive control for second-order DC–DC converters: PBC
  49. approach,» en Modeling, Operation, and Analysis of DC Grids, Elsevier, 2021, págs. 289-310. DOI: 10.1016/b978-0-12-822101-3.00016-2.
  50. C. Vega y R. Alzate, «Inverse optimal control on electric power conversion,» en 2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC),
  51. IEEE, 2014. DOI: 10 . 1109 / ropec . 2014 .

Downloads

Download data is not yet available.