Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Caracterización del modelo de circuito de reactores de derivación utilizando un modelo de programación no lineal

Resumen

This research presents the development of an optimization model to estimate parameters for reactive power compensators in medium voltage networks using reactors. The proposed mathematical modeling belongs to the family of nonlinear programming models. The proposed mathematical model considers multiple measures regarding applied voltage in terminals of the reactor as well as data regarding active and reactive power behavior and input current. The objective function considered corresponded to the minimization of the mean square error between the measured and calculated variables. To solve the proposed optimization model is employed the General Algebraic Modeling System (GAMS) software. Numerical results in two reactors' with nominal compensation capabilities of about 2~Mvar and 6.75~Mvar, operated with 13, and 25~kV, demonstrate the effectiveness of the proposed optimization model to characterize the electrical circuit of these compensation devices. Different nonlinear programming algorithms available in GAMS were employed in the solution of the proposed optimization model with objective functions lower than $1\times10^{-10}$, which confirms that the measured and calculated variables have the same numerical behavior, which allows concluding that the characterized circuit reflects the expected electrical behavior of the reactors under different voltage input.

Palabras clave

Medium-voltage distribution networks, reactors, circuit model characterization, parameter estimation, nonlinear programming model, GAMS software

PDF

Citas

  1. M. Tumay, T. Demirdelen, S. Bal, R. ˙I. Kayaalp, B. Dogru y M. Aksoy, “A review of magnetically controlled shunt reactor for power quality improvement with renewable energy applications,” Renewable and Sustainable Energy Reviews, vol. 77,págs. 215-228, sep. de 2017. DOI: 10.1016/j.rser.2017.04.008.
  2. E. Nashawati, N. Fischer, B. Le y D. Taylor, “Impacts of shunt reactors on transmission line protection,” en 38th Annual Western Protective Relay Conference, 2011, págs. 1-16.
  3. R. M. Arias-Velásquez y J. V. Mejía-Lara, “Root cause analysis for shunt reactor failure in 500kV power system,” Engineering Failure Analysis, vol. 104, págs. 1157-1173, oct. de 2019. DOI: 10.1016/j.engfailanal.2019.06.076.
  4. T. P. Minh, H. B. Duc, N. P. Hoai et al., “Finite Element Modeling of Shunt Reactors Used in High Voltage Power Systems,” Engineering, Technology & Applied Science Research, vol. 11, n.o 4, págs. 7411-7416, ago. de 2021. DOI: 10.48084/etasr.4271.
  5. X. Xie y C. Huang, “A novel adaptive autoreclosing scheme for transmission lines with shunt reactors,” Electric Power Systems Research,
  6. vol. 171, págs. 47-53, jun. de 2019. DOI: 10.1016/j.epsr.2019.01.028.
  7. A. Zupan, B. Filipovic-Grcic e I. Uglesic, “Modeling of variable shunt reactor in transmission power system for simulation of switching transients,” en 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), IEEE, mayo de 2017. DOI: 10.23919/mipro.2017.7973495.
  8. H. Huang, Y. Tang, L. Ren et al., “Simplified Design of R-SFCL With Shunt Reactor for Protecting HTS Cable in Distribution Network,”
  9. IEEE Transactions on Applied Superconductivity, vol. 31, n.o 8, págs. 1-5, nov. de 2021. DOI: 10.1109/tasc.2021.3091075.
  10. Y. Hao, X. Yonghai, L. Yingying, Z. Yongqiang y X. Xiangning, “Study of Nonlinear Model of Shunt Reactor in 1000kV AC Transmission System,” en 2009 International Conference on Energy and Environment Technology, IEEE, 2009. DOI:10.1109/iceet.2009.312.
  11. A. ˙I. ÇANAKOGLU, A. G. YETG ˘ ˙IN, H. TEMURTA¸S y M. TURAN, “Induction motor parameter estimation using metaheuristic methods,”
  12. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES, vol. 22, págs. 1177-1192, 2014. DOI: 10.3906/elk-1211-171.
  13. J. Montano, A. F. Tobon, J. P. Villegas y M. Durango, “Grasshopper optimization algorithm for parameter estimation of photovoltaic modules based on the single diode model,” International Journal of Energy and Environmental Engineering, vol. 11,
  14. n.o 3, págs. 367-375, feb. de 2020. DOI: 10.1007/s40095-020-00342-4.
  15. S. Y. Bocanegra, O. D. Montoya y A. Molina-Cabrera, “Estimación de parámetros en transformadores monofásicos empleando medidas de tensión y corriente,” Revista UIS Ingenierıas, vol. 19, n.o 4, págs. 63-75, mayo de 2020. DOI: 10.18273/ revuin.v19n4-2020006.
  16. M. Calasan, D. Muji ´ ciˇ c, V. Rubeži ´ c y M. Radu-lovic, “Estimation of Equivalent Circuit Parameters of Single-Phase Transformer by Using Chaotic Optimization Approach,” Energies, vol. 12, n.o 9, pág. 1697, mayo de 2019. DOI: 10.3390/
  17. en12091697.
  18. V. Sakthivel, R. Bhuvaneswari y S. Subramanian, “Multi-objective parameter estimation of induction motor using particle swarm optimization,” Engineering Applications of Artificial Intelligence, vol. 23, n.o 3, págs. 302-312, abr. de 2010. DOI: 10.1016/j.engappai.2009.06.004.
  19. H. R. Mohammadi y A. Akhavan, “Parameter Estimation of Three-Phase Induction Motor Using Hybrid of Genetic Algorithm and Particle Swarm Optimization,” Journal of Engineering, vol. 2014, págs. 1-6, 2014. DOI: 10.1155/2014/148204.
  20. R.-C. Wu, Y.-W. Tseng y C.-Y. Chen, “Estimating Parameters of the Induction Machine by the Polynomial Regression,” Applied Sciences, vol. 8, n.o 7, pág. 1073, jul. de 2018. DOI: 10 . 3390/app8071073.
  21. O. D. Montoya, W. Gil-González y L. F. Grisales-Noreña, “Sine-cosine algorithm for parameters’ estimation in solar cells using datasheet information,” Journal of Physics: Conference Series, vol. 1671, n.o 1, pág. 012 008, oct. de 2020. DOI: 10.1088/1742-6596/1671/1/012008.
  22. B. J. Restrepo-Cuestas, J. Montano, C. A. Ramos-Paja, L. A. Trejos-Grisales y M. L. Orozco-Gutierrez, “Parameter Estimation of the Bishop Photovoltaic Model Using a Genetic Algorithm,” Applied Sciences, vol. 12, n.o 6, pág. 2927, mar. de 2022. DOI: 10.3390/app12062927.
  23. D. Saadaoui, M. Elyaqouti, K. Assalaou, D. B. hmamou y S. Lidaighbi, “Parameters optimization of solar PV cell/module using genetic algorithm based on non-uniform mutation,” Energy Conversion and Management: X, vol. 12, pág. 100 129, dic. de 2021. DOI: 10.1016/j.ecmx.2021.100129.
  24. K. Dawood, G. Komurgoz y F. Isik, “Modelling of the Shunt Reactor by using Finite Element Analysis,” en 2020 XI International Conference on Electrical Power Drive Systems (ICEPDS), IEEE, oct. de 2020. DOI: 10.1109/icepds47235.2020.9249363.
  25. Y. O. and, “Designing a Reactor for Use in High Voltage Power Systems and Performing Experimental and Simulation Analysis,” Journal of Engineering Research, mayo de 2022. DOI: 10.36909/jer.17017.
  26. D. G. Gracia-Velásquez, A. S. Morales-Rodrıguez y O. D. Montoya, “Application of the Crow Search Algorithm to the Problem of the Parametric Estimation in Transformers Considering Voltage and Current Measures,” Computers, vol. 11, n.o 1, pág. 9, ene. de 2022. DOI: 10 . 3390/computers11010009.
  27. M. Calasan, A. Jovanovic, V. Rubezic, D. Mujicic y A. Deriszadeh, “Notes on parameter estimation for single-phase transformer,” IEEE Transactionson Industry Applications, págs. 1-1, 2020. DOI:10.1109/tia.2020.2992667.
  28. A. Soroudi, Power System Optimization Modeling in GAMS. Springer International Publishing, 2017. DOI: 10.1007/978-3-319-62350-4.
  29. M. Seda, “The Assignment Problem and Its Relation to Logistics Problems,” Algorithms, vol. 15, n.o 10, pág. 377, oct. de 2022. DOI: 10 . 3390/a15100377.
  30. P. V. Babu y S. Singh, “Optimal Placement of DG in Distribution Network for Power Loss Minimization Using NLP & PLS Technique,” Energy Procedia, vol. 90, págs. 441-454, dic. de 2016. DOI: 10.1016/j.egypro.2016.11.211.
  31. O. D. Montoya, W. Gil-González y L. Grisales-Noreña, “An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach,” Ain Shams Engineering Journal, vol. 11, n.o 2,
  32. págs. 409-418, jun. de 2020. DOI: 10.1016/j.asej.2019.08.011.
  33. M. Daneshvar, B. Mohammadi-Ivatloo y K. Zare, “An application of GAMS in simulating hybrid energy networks optimization problems,” en Emerging Transactive Energy Technology for Future Modern Energy Networks, Elsevier, 2023, págs. 149-181. DOI: 10 . 1016/b978-0-323-91133-7.00009-0.
  34. L. F. Grisales-Noreña, O. D. Montoya, B. Cortés-Caicedo, F. Zishan y J. Rosero-Garcıa, “Optimal Power Dispatch of PV Generators in AC Distribution Networks by Considering Solar, Environmental, and Power Demand Conditions from Colombia,” Mathematics, vol. 11, n.o 2, pág. 484
  35. S. Rajput, E. Bender, and M. Averbukh, “Simplified algorithm for assessment equivalent circuit parameters of induction motors,” IET Electric Power Applications, no. 3, pp. 426–432, 2020. DOI: 10.1049/iet-epa.2019.0822.
  36. K. Dawood, G. Komurgoz, and F. Isik, “Modelling of the Shunt Reactor by using Finite Element Analysis,” in 2020 XI International Conference on Electrical Power Drive Systems (ICEPDS), IEEE, 2020. DOI: 10.1109/icepds47235.2020.
  37. Y. O. and, “Designing a reactor for use in high voltage power systems and performing experimental and simulation analysis,” Journal of Engineering Research, 2022. DOI: 10.
  38. /jer.17017.
  39. A. Soroudi, Power System Optimization Modeling in GAMS. Springer International Publishing, 2017. DOI: 10.1007/978-3-319-62350-4.
  40. M. Seda, “The Assignment Problem and Its Relation to Logistics Problems,” Algorithms, vol. 15, no. 10, p. 377,
  41. DOI: 10.3390/a15100377.
  42. P. V. Babu and S. Singh, “Optimal Placement of DG in Distribution Network for Power Loss Minimization Using
  43. NLP & PLS Technique,” Energy Procedia, vol. 90, pp. 441–454, 2016. DOI: 10.1016/j.egypro.2016.11.211.
  44. O. D. Montoya, W. Gil-Gonz´alez, and L. Grisales-Nore˜na, “An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach,” Ain Shams Engineering Journal, vol. 11, no. 2, pp. 409–418, 2020. DOI: 10.1016/j.asej.2019.08.011.
  45. M. Daneshvar, B. Mohammadi-Ivatloo, and K. Zare, “An application of GAMS in simulating hybrid energy networks optimization problems,” in Emerging Transactive Energy Technology for Future Modern Energy Networks, Elsevier, 2023, pp. 149–181. DOI: 10.1016/b978- 0- 323- 91133- 7.00009-0.
  46. L. F. Grisales-Nore˜na, O. D. Montoya, B. Cort´es-Caicedo, F. Zishan, and J. Rosero-Garc´ıa, “Optimal Power Dispatch of PV Generators in AC Distribution Networks by Considering Solar, Environmental, and Power Demand Conditions from Colombia,” Mathematics, vol. 11, no. 2, p. 484, 2023. DOI: 10.3390/math11020484.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 > >> 

También puede {advancedSearchLink} para este artículo.