Optimization of Furfural Adsorption: An Innovative Approach using MgAl – supported MoS2 as a catalysts
Abstract
The study of hydrotalcite type materials in different reactions has been of great interest in different fields such as catalysis. The present research focused on the use of MoS2 solids supported on MgAl with different Mo contents at 5 %, 10% and 15% by weight. The characterization of the solids was carried out by X-ray diffraction (XRD), nitrogen physisorption, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and Scanning Electron Microscopy (SEM) in order to evaluate the crystallographic, morphological, spectroscopic and microscopic properties that allowed to demonstrate the formation of the laminar materials. On the other hand, the evaluation of the adsorption of the contaminant was determined by means of UV-Vis spectrophotometry. In the study, each of the synthesized solids, the mass of adsorbent material, the adsorption temperature and the concentration of furfural were evaluated. The studies showed that at temperatures of 18°C and 30°C , pseudo-first-order kinetics occur, indicating that adsorption of furfural by the materials used is possible.
Keywords
furfural, hydrotalcite, MoS2, adsorption.
References
- S. Ghosh, O. Falyouna, A. Malloum, A. Othmani, C. Bornman, H. Bedair, H. Onyeaka, Z.T. Al-Sharify, A.O. Jacob, T. Miri, C. Osagie, S. Ahmadi, A general review on the use of advance oxidation and adsorption processes for the removal of furfural from industrial effluents, Microporous and Mesoporous Materials 331 (2022) 111638. https://doi.org/https://doi.org/10.1016/j.micromeso.2021.111638.
- Z. Esmaili, A.R. Solaimany Nazar, M. Farhadian, Degradation of furfural in contaminated water by titanium and iron oxide nanophotocatalysts based on the natural zeolite (clinoptilolite), Scientia Iranica 24 (2017) 1221–1229. https://doi.org/10.24200/sci.2017.4106.
- P. Vinosh muthukumar, B. Gopalakrishnan, B. Bharathiraja, Experimental design approach for petrochemical waste water treatment using solar assisted photo Fenton process, Journal of the Indian Chemical Society 99 (2022) 100622. https://doi.org/https://doi.org/10.1016/j.jics.2022.100622.
- Z. Ismail, A. Jasim, Ultrasonic treatment of wastewater contaminated with furfural, IDA Journal of Desalination and Water Reuse 6 (2014) 103–111. https://doi.org/10.1179/2051645214Y.0000000028.
- A.K. Sahu, V.C. Srivastava, I.D. Mall, D.H. Lataye, Adsorption of Furfural from Aqueous Solution onto Activated Carbon: Kinetic, Equilibrium and Thermodynamic Study, Sep Sci Technol 43 (2008) 1239–1259. https://doi.org/10.1080/01496390701885711.
- K. Fang, R. Yang, A comparison on the efficiency of raw activated carbon, oxidized, and sulfurized adsorbents for furfural adsorption, Alexandria Engineering Journal 60 (2021) 1241–1248. https://doi.org/https://doi.org/10.1016/j.aej.2020.10.047.
- S. Singh, V.C. Srivastava, I.D. Mall, Fixed-bed study for adsorptive removal of furfural by activated carbon, Colloids Surf A Physicochem Eng Asp 332 (2009) 50–56. https://doi.org/https://doi.org/10.1016/j.colsurfa.2008.08.025.
- G. Aidan, Agricultural wastes and activated carbon from them for furfural removal from water solutions, Life Sci J 9 (2012) 2501–2505.
- H. Wang, Q. Li, Z. Zhang, E. Ayepa, Q. Xiang, X. Yu, K. Zhao, L. Zou, Y. Gu, X. Li, Q. Chen, X. Zhang, Y. Yang, X. Jin, H. Yin, Z.L. Liu, T. Tang, B. Liu, M. Ma, Discovery of new strains for furfural degradation using adaptive laboratory evolution in Saccharomyces cerevisiae, J Hazard Mater 459 (2023) 132090. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.132090.
- M. Leili, G. Asgari, A.A. Eskandari, L. Borzoei, B. Ramavandi, The study of furfural removal from aqueous solutions using activated carbon and bentonite modified with cetyltrimethylammonium bromide (CTAB), a cationic surfactant, Ijhe 8 (2015) 285–296. http://ijhe.tums.ac.ir/article-1-5432-en.html.
- M. Anbia, N. Mohammadi, A nanoporous adsorbent for removal of furfural from aqueous solutions, Desalination 249 (2009) 150–153. https://doi.org/10.1016/j.desal.2008.06.027.
- O.R. Mebrek, Z. Derriche, Removal of Furfural from Aqueous Solutions by Adsorption Using Organobentonite: Isotherm and Kinetic Studies, Adsorption Science & Technology 28 (2010) 533–545. https://doi.org/10.1260/0263-6174.28.6.533.
- L. Wang, X. Gao, Y. Cheng, X. Zhang, G. Wang, Q. Zhang, J. Su, TiO2@MgAl-layered double hydroxide with enhanced photocatalytic activity towards degradation of gaseous toluene, J Photochem Photobiol A Chem 369 (2019) 44–53. https://doi.org/https://doi.org/10.1016/j.jphotochem.2018.10.004.
- Ó.H. Giraldo Osorio, N.P. Arias Duque, J.M. Aguirre Cortés, PROPIEDADES DIELÉCTRICAS DE HIDRÓXIDOS DOBLES LAMINARES DE Mg:Al, Revista de la Sociedad Química del Perú 81 (2015) 224–231. https://www.redalyc.org/articulo.oa?id=371943526004.
- E. Bernard, W.J. Zucha, B. Lothenbach, U. Mäder, Stability of hydrotalcite (Mg-Al layered double hydroxide) in presence of different anions, Cem Concr Res 152 (2022) 106674. https://doi.org/https://doi.org/10.1016/j.cemconres.2021.106674.
- S. Eijsbouts, J.J.L. Heinerman, H.J.W. Elzerman, MoS2 structures in high-activity hydrotreating catalysts: I. Semi-quantitative method for evaluation of transmission electron microscopy results. Correlations between hydrodesulfurization and hydrodenitrogenation activities and MoS2 dispersion, Appl Catal A Gen 105 (1993) 53–68. https://doi.org/https://doi.org/10.1016/0926-860X(93)85133-A.
- J. DU, J. ZHAO, J. REN, Interface effect of C3N4-Ti4O7-MoS2 composite toward enhanced electrocatalytic hydrogen evolution reaction, Journal of Fuel Chemistry and Technology 49 (2021) 986–996. https://doi.org/https://doi.org/10.1016/S1872-5813(21)60109-3.
- A.M.A. Omar, H.S.H. Mohamed, G. Khabiri, In situ growth of semiconducting 1T/3R-MoS2 nanosheets on spindle Mil88a as a novel heterostructure for outstanding photocatalytic performance, Sep Purif Technol 339 (2024) 126712. https://doi.org/https://doi.org/10.1016/j.seppur.2024.126712.
- S. Palencia-Ruiz, D. Uzio, C. Legens, D. Laurenti, P. Afanasiev, Stability and catalytic properties of 1T-MoS2 obtained via solvothermal synthesis, Appl Catal A Gen 626 (2021) 118355. https://doi.org/https://doi.org/10.1016/j.apcata.2021.118355.
- G. Zheng, C. Wu, J. Wang, S. Mo, Y. Wang, Z. Zou, B. Zhou, F. Long, Facile synthesis of few-layer MoS2 in MgAl-LDH layers for enhanced visible-light photocatalytic activity, RSC Adv. 9 (2019) 24280–24290. https://doi.org/10.1039/C9RA03858B.
- D. Panchal, A. Sharma, P. Mondal, O. Prakash, S. Pal, Heterolayered TiO2@layered double hydroxide-MoS2 nanostructure for simultaneous adsorption-photocatalysis of co-existing water contaminants, Appl Surf Sci 553 (2021) 149577. https://doi.org/https://doi.org/10.1016/j.apsusc.2021.149577.
- L. Wu, B. Peng, Q. Li, Q. Wang, X. Yan, K. Li, Q. Lin, Effects of Cu2+ incorporation on ZnAl-layered double hydroxide, New J. Chem. 44 (2020) 5293–5302. https://doi.org/10.1039/D0NJ00278J.
- H.A. Hamad, H. Nageh, H.M. El-Bery, A. Kasry, F. Carrasco-Marín, O.M. Elhady, A.M.M. Soliman, M.A.E.A.A.A. El-Remaily, Unveiling the exceptional synergism-induced design of Co-Mg-Al layered triple hydroxides (LTHs) for boosting catalytic activity toward the green synthesis of indol-3-yl derivatives under mild conditions, J Colloid Interface Sci 599 (2021) 227–244. https://doi.org/https://doi.org/10.1016/j.jcis.2021.04.083.
- J. Zhang, D. Han, Y. Wang, L. Wang, X. Chen, X. Qiao, X. Yu, Synergy between nanozymes and natural enzymes on the hybrid MoS2 nanosheets/graphite microfiber for enhanced voltammetric determination of hydrogen peroxide, Microchimica Acta 187 (2020) 321. https://doi.org/10.1007/s00604-020-04299-3.
- M.K. Francis, B.B. P, S. N, G. R, N. Ahmed, B. C, Bifacial DSSC fabricated using low-temperature processed 3D flower like MoS2 - high conducting carbon composite counter electrodes, Mater Today Commun 27 (2021) 102208. https://doi.org/https://doi.org/10.1016/j.mtcomm.2021.102208.
- F. Yang, Z. Cao, J. Wang, S. Wang, H. Zhong, Novel preparation of high activity 1T-phase MoS2 ultra-thin flakes by layered double hydroxide for enhanced hydrogen evolution performance, Int J Hydrogen Energy 44 (2019) 21229–21237. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.06.069.
- L. Wang, J. Li, H. Zhou, Z. Huang, B. Zhai, L. Liu, L. Hu, Three-dimensionally layers nanosheets of MoS2 with enhanced electrochemical performance using as free-standing anodes of lithium ion batteries, Journal of Materials Science: Materials in Electronics 29 (2018) 3110–3119. https://doi.org/10.1007/s10854-017-8243-1.
- S. Mancipe, F. Tzompantzi, R. Gómez, Synthesis of CdS/MgAl layered double hydroxides for hydrogen production from methanol-water decomposition, Appl Clay Sci 136 (2017) 67–74. https://doi.org/https://doi.org/10.1016/j.clay.2016.11.013.
- J. Houssaini, M. Naciri Bennani, H. Ziyat, S. Arhzaf, O. Qabaqous, A. Amhoud, Study of the Catalytic Activity of the Compounds Hydrotalcite Type Treated by Microwave in the Self-Condensation of Acetone, Int J Anal Chem 2021 (2021) 1551586. https://doi.org/https://doi.org/10.1155/2021/1551586.
- M. Thommes, K. Kaneko, A. V Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), 87 (2015) 1051–1069. https://doi.org/doi:10.1515/pac-2014-1117.
- L. Wang, X. Gao, Y. Cheng, X. Zhang, G. Wang, Q. Zhang, J. Su, TiO2@MgAl-layered double hydroxide with enhanced photocatalytic activity towards degradation of gaseous toluene, J Photochem Photobiol A Chem 369 (2019) 44–53. https://doi.org/https://doi.org/10.1016/j.jphotochem.2018.10.004.
- K. Zhou, S. Jiang, C. Bao, L. Song, B. Wang, G. Tang, Y. Hu, Z. Gui, Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties, RSC Adv. 2 (2012) 11695–11703. https://doi.org/10.1039/C2RA21719H.
- Y. Wang, P. Wu, Y. Li, N. Zhu, Z. Dang, Structural and spectroscopic study of tripeptide/layered double hydroxide hybrids, J Colloid Interface Sci 394 (2013) 564–572. https://doi.org/https://doi.org/10.1016/j.jcis.2012.11.031.
- J. Pérez-Ramírez, G. Mul, F. Kapteijn, J.A. Moulijn, A spectroscopic study of the effect of the trivalent cation on the thermal decomposition behaviour of Co-based hydrotalcites, J. Mater. Chem. 11 (2001) 2529–2536. https://doi.org/10.1039/B104989P.
- X. Liu, B. Fan, S. Gao, R. Li, Transesterification of tributyrin with methanol over MgAl mixed oxides derived from MgAl hydrotalcites synthesized in the presence of glucose, Fuel Processing Technology 106 (2013) 761–768. https://doi.org/https://doi.org/10.1016/j.fuproc.2012.10.014.
- J. Chen, Y. Song, D. Shan, E.-H. Han, Study of the in situ growth mechanism of Mg–Al hydrotalcite conversion film on AZ31 magnesium alloy, Corros Sci 63 (2012) 148–158. https://doi.org/https://doi.org/10.1016/j.corsci.2012.05.022.
- M.S. Alhumaimess, I. Hotan Alsohaimi, H.M.A. Hassan, M.Y. El-Sayed, M.S. Alshammari, O.F. Aldosari, H.M. Alshammari, M.M. Kamel, Synthesis of ionic liquid intercalated layered double hydroxides of magnesium and aluminum: A greener catalyst of Knoevenagel condensation, Journal of Saudi Chemical Society 24 (2020) 321–333. https://doi.org/https://doi.org/10.1016/j.jscs.2020.01.006.
- J. Cao, J. Zhou, Y. Zhang, X. Liu, A Clean and Facile Synthesis Strategy of MoS2 Nanosheets Grown on Multi-Wall CNTs for Enhanced Hydrogen Evolution Reaction Performance, Sci Rep 7 (2017) 8825. https://doi.org/10.1038/s41598-017-09047-x.
- V. Fominski, M. Demin, V. Nevolin, D. Fominski, R. Romanov, M. Gritskevich, N. Smirnov, Reactive Pulsed Laser Deposition of Clustered-Type MoSx (x ~ 2, 3, and 4) Films and Their Solid Lubricant Properties at Low Temperature, Nanomaterials 10 (2020). https://doi.org/10.3390/nano10040653.
- M. Huang, G. Lu, J. Pu, Y. Qiang, Superhydrophobic and smart MgAl-LDH anti-corrosion coating on AZ31 Mg surface, Journal of Industrial and Engineering Chemistry 103 (2021) 154–164. https://doi.org/https://doi.org/10.1016/j.jiec.2021.07.031.
- W. An, J. Ma, Q. Xu, Bio-template synthesis of MgAl layered double hydroxide with enhanced flame retardant property for leather finishes, Appl Surf Sci 551 (2021) 149409. https://doi.org/https://doi.org/10.1016/j.apsusc.2021.149409.
- P.M. Korusenko, S.N. Nesov, S.N. Povoroznyuk, P. V Orlov, D.N. Korotaev, K.N. Poleschenko, E.E. Tarasov, Data on the morphology and chemical state of coatings based on TiN obtained by condensation with ion bombardment on various substrates, Data Brief 27 (2019) 104737. https://doi.org/https://doi.org/10.1016/j.dib.2019.104737.
- W. Peng, W. Wang, G. Han, Y. Huang, Y. Zhang, Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization, Desalination 473 (2020) 114191. https://doi.org/https://doi.org/10.1016/j.desal.2019.114191.
- J. Saien, M. Moradi, A.R. Soleymani, Homogenous Persulfate and Periodate Photochemical Treatment of Furfural in Aqueous Solutions, Clean (Weinh) 45 (2017) 1600460. https://doi.org/https://doi.org/10.1002/clen.201600460.
- K. Fang, R. Yang, Modified activated carbon by air oxidation as a potential adsorbent for furfural removal, Alexandria Engineering Journal 60 (2021) 2325–2333. https://doi.org/https://doi.org/10.1016/j.aej.2020.12.032.
- A.K. Sahu, V.C. Srivastava, I.D. Mall, D.H. Lataye, Adsorption of Furfural from Aqueous Solution onto Activated Carbon: Kinetic, Equilibrium and Thermodynamic Study, Sep Sci Technol 43 (2008) 1239–1259. https://doi.org/10.1080/01496390701885711.
- S. Singh, V.C. Srivastava, I.D. Mall, Fixed-bed study for adsorptive removal of furfural by activated carbon, Colloids Surf A Physicochem Eng Asp 332 (2009) 50–56. https://doi.org/https://doi.org/10.1016/j.colsurfa.2008.08.025.
- M. Cuevas, S.M. Quero, G. Hodaifa, A.J.M. López, S. Sánchez, Furfural removal from liquid effluents by adsorption onto commercial activated carbon in a batch heterogeneous reactor, Ecol Eng 68 (2014) 241–250. https://doi.org/https://doi.org/10.1016/j.ecoleng.2014.03.017.
- L. Wu, X. Lin, X. Zhou, X. Luo, Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum, Appl Surf Sci 384 (2016) 466–479. https://doi.org/https://doi.org/10.1016/j.apsusc.2016.05.056.
- L. B. Ariza Traslaviña, L. J. Torres Romero, D. A. Blanco Martínez, Adsorption Kinetics of 2-Nitrophenol from Aqueous Solution on Activated Carbon, Rev. Ciencias 20 (2016) 65–75.
- K. Fang, R. Yang, A comparison on the efficiency of raw activated carbon, oxidized, and sulfurized adsorbents for furfural adsorption, Alexandria Engineering Journal 60 (2021) 1241–1248. https://doi.org/https://doi.org/10.1016/j.aej.2020.10.047.
- K.E. Manz, G. Haerr, J. Lucchesi, K.E. Carter, Adsorption of hydraulic fracturing fluid components 2-butoxyethanol and furfural onto granular activated carbon and shale rock, Chemosphere 164 (2016) 585–592. https://doi.org/https://doi.org/10.1016/j.chemosphere.2016.09.010.
- M. Jarquin, M. Lacayo, Remoción de plomo en solución acuosa usando criogeles basados en polyacrylamide como adsorbente: Estudio de equilibrio en modo batch, Revista Torreón Universitario 9 (2020) 77–93. https://doi.org/10.5377/torreon.v9i25.9855.