Efectos de intercambio y correlación en las propiedades estructurales y electrónicas del TiO2 en la fase rutilo / Exchange and correlation effects on the structural and electronic properties of TiO2 on the rutile phase

Autores/as

  • Rafael Gonzalez Hernandez Universidad del Norte, Barranquilla, Colombia.
  • Victor Mendoza-Estrada
  • Edgar Castaño-González
  • Alvaro González-García

DOI:

https://doi.org/10.19053/01217488.v8.n1.2017.4701

Palabras clave:

Cálculo de primeros principios, DFT, GGA, TiO2

Resumen

En este trabajo, se estudiaron las propiedades estructurales y electrónicas del TiO2 en la fase rutilo a partir
de cálculos de primeros principios. Los efectos de intercambio y correlación electrónica fueron estudiados
utilizando funcionales en la aproximación de densidad local (LDA), la aproximación de gradiente generalizado
(GGA) de Perdew-Burke-Ernzerhof (PBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol),
Perdew-Wang 91 (PW91) y revised Perdew-Burke-Ernzerhof (rPBE), y la aproximación de gradiente
meta-generalizado (meta-GGA) de Tao-Perdew-Staroverov-Scuseria (TPSS) y revised-TPSS (RTPSS), en el
marco de la Teoría del Funcional de la Densidad (DFT). Encontramos que el funcional PBEsol proporciona
mejores resultados para el cálculo de los parámetros de red (a y c) y las longitudes ecuatorial y axial (deq
y dax), mientras que para la energía de cohesión (Ecoh), el módulo volumétrico (B0) y los ángulos (2q y
a) los funcionales PBE, rPBE y TPSS, respectivamente, se acercan más a los valores experimentales. Se
confirma que el TiO2 presenta propiedades de semiconductor directo en G

JEL Classification

Array

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Rafael Gonzalez Hernandez, Universidad del Norte, Barranquilla, Colombia.

Dr. Rafael Gonzalez

Profesor Asociado

Departamento de Fisica

Universidad del Norte

Referencias

M. Mikami, S. Nakamura, O. Kitao, H. Arakawa, and X. Gonze, "First-Principles Study of Titanium Dioxide: Rutile and Anatase", Japanese Journal of Applied Physics, vol. 39, pp. 847-850, 2000. DOI: https://doi.org/10.1143/JJAP.39.L847

J. Muscat, V. Swamy, and Nicholas M. Harrison, "First-principles calculations of the phase stability of TiO2", Physical Review B, vol. 65, pp. 224112-1(15) 2002. DOI: https://doi.org/10.1103/PhysRevB.65.224112

J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, Jr. and J. V. Smith, "Structuralelectronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K", Journal of the American Chemical Society, vol. 109, pp. 3639-3646, 1987. DOI: https://doi.org/10.1021/ja00246a021

R. Wyckoff, Çrystal Structures", 2nd ed. Interscience, New York, vol. 1, 1964.

K. V. K. Rao, S. V. N. Naidu, and L. Iyengar, "Thermal Expansion of Rutile and Anatase", Journal of the American Ceramic Society, vol. 53, pp. 124-126, 1970. DOI: https://doi.org/10.1111/j.1151-2916.1970.tb12051.x

C. J. Howard, T. M. Sabine, and F. Dickson, "Structural and thermal parameters for rutile and anatase", Acta Crystallographica Section B: structural Science, vol. 47, pp. 462-468, 1991. DOI: https://doi.org/10.1107/S010876819100335X

F. Labat, P. Baranek, C. Domain, C. Minot, and C. Adamo, "Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances

of different exchange-correlation functionals", The Journal of Chemical Physics, vol. 126, pp. 154703(1-12), 2007. DOI: https://doi.org/10.1063/1.2717168

W. J. Yin, S. Chen, J. H. Yang, X. G. Gong, Y. Yan, and S. H. Wei, .Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction", Applied Physics Letters, vol. 96, pp. 221901(1-3), 2010. DOI: https://doi.org/10.1063/1.3430005

K. M. Glassford and J. R. Chelikowsky, "Structural and electronic properties of titanium dioxide", Physical Review B, vol. 46, pp. 1284-1298, 1992. DOI: https://doi.org/10.1103/PhysRevB.46.1284

J. P. Perdew and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems", Physical Review B, vol. 23, pp. 5048-5079, 1981. DOI: https://doi.org/10.1103/PhysRevB.23.5048

J. P. Perdew, K. Burke, M. Emzerhof, "Generalized Gradient Approximation Made Simple", Physical Review Letters, vol. 77, pp. 3865-3868, 1996. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces", Physical Review Letters, vol. 100, pp. 136406(1-4), 2008. DOI: https://doi.org/10.1103/PhysRevLett.100.136406

J. P. Perdew, J.A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, .Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation", Physical Review B, vol. 46, pp. 6671-6687, 1992. DOI: https://doi.org/10.1103/PhysRevB.46.6671

B. Hammer, L. B. Hansen and J. K. Norskov, Ïmproved adsorption energetics within densityfunctional theory using revised Perdew-Burke-

Ernzerhof functionals", Physical Review B, vol 59, pp. 7413-7421, 1999. DOI: https://doi.org/10.1103/PhysRevB.59.7413

J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Çlimbing the Density Functional Ladder: Nonempirical Meta Generalized Gradient Approximation Designed for Molecules andSolids", Physical Review Letters, vol. 91, pp. 146401(1-4), 2003. DOI: https://doi.org/10.1103/PhysRevLett.91.146401

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, "Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry", Physical Review Letters, vol. 103, pp. 026403(1-4), 2009. DOI: https://doi.org/10.1103/PhysRevLett.103.026403

V. I. Anisimov, J. Zaane, O. K. Andersen, "Band theory and Mott insulators: Hubbard U instead of Stoner I", Physical Review B, vol.

, pp. 943-954, 1991.

G. Kresse and J. Hafner, .Ab initio molecular dynamics for liquid metals", Physical Review B, vol. 47, pp. 558-561(R) 1993; .Ab initio DOI: https://doi.org/10.1103/PhysRevB.47.558

molecular-dynamics simulation of the liquidmetal? amorphous semiconductor transition in germanium". Physical Review B, vol. 49, pp. 14251-14269, 1994. DOI: https://doi.org/10.1103/PhysRevB.49.14251

F. D. Murnaghan, "THE COMPRESSIBILITY OF MEDIA UNDER EXTREME PRESSURES", Proceedings of the National Academy Science, vol. 30, pp. 244-247, 1944. DOI: https://doi.org/10.1073/pnas.30.9.244

T. Arlt, M. Bermejo, M. A. Blanco, L. Gerward, J. Z. Jiang, J. Staun Olsen, and J. M. Recio, "High-pressure polymorphs of anatase TiO2", Physical Review B, vol. 61, pp. 14414-14419, 2000. DOI: https://doi.org/10.1103/PhysRevB.61.14414

R. C. Weast, ÇRC Handbook of Chemistry and physics", 64th ed.

(CRC, Boca Raton, FL, 1983) 8

Descargas

Publicado

2017-05-31

Cómo citar

Gonzalez Hernandez, R., Mendoza-Estrada, V., Castaño-González, E., & González-García, A. (2017). Efectos de intercambio y correlación en las propiedades estructurales y electrónicas del TiO2 en la fase rutilo / Exchange and correlation effects on the structural and electronic properties of TiO2 on the rutile phase. Ciencia En Desarrollo, 8(1), 161–168. https://doi.org/10.19053/01217488.v8.n1.2017.4701

Número

Sección

Artículos de investigación / Research papers

Métrica