Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efectos de intercambio y correlación en las propiedades estructurales y electrónicas del TiO2 en la fase rutilo / Exchange and correlation effects on the structural and electronic properties of TiO2 on the rutile phase

Resumen

En este trabajo, se estudiaron las propiedades estructurales y electrónicas del TiO2 en la fase rutilo a partir
de cálculos de primeros principios. Los efectos de intercambio y correlación electrónica fueron estudiados
utilizando funcionales en la aproximación de densidad local (LDA), la aproximación de gradiente generalizado
(GGA) de Perdew-Burke-Ernzerhof (PBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol),
Perdew-Wang 91 (PW91) y revised Perdew-Burke-Ernzerhof (rPBE), y la aproximación de gradiente
meta-generalizado (meta-GGA) de Tao-Perdew-Staroverov-Scuseria (TPSS) y revised-TPSS (RTPSS), en el
marco de la Teoría del Funcional de la Densidad (DFT). Encontramos que el funcional PBEsol proporciona
mejores resultados para el cálculo de los parámetros de red (a y c) y las longitudes ecuatorial y axial (deq
y dax), mientras que para la energía de cohesión (Ecoh), el módulo volumétrico (B0) y los ángulos (2q y
a) los funcionales PBE, rPBE y TPSS, respectivamente, se acercan más a los valores experimentales. Se
confirma que el TiO2 presenta propiedades de semiconductor directo en G

Palabras clave

Cálculo de primeros principios, DFT, GGA, TiO2

PDF

Biografía del autor/a

Rafael Gonzalez Hernandez

Dr. Rafael Gonzalez

Profesor Asociado

Departamento de Fisica

Universidad del Norte


Citas

  1. M. Mikami, S. Nakamura, O. Kitao, H. Arakawa, and X. Gonze, "First-Principles Study of Titanium Dioxide: Rutile and Anatase", Japanese Journal of Applied Physics, vol. 39, pp. 847-850, 2000. DOI: https://doi.org/10.1143/JJAP.39.L847
  2. J. Muscat, V. Swamy, and Nicholas M. Harrison, "First-principles calculations of the phase stability of TiO2", Physical Review B, vol. 65, pp. 224112-1(15) 2002. DOI: https://doi.org/10.1103/PhysRevB.65.224112
  3. J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, Jr. and J. V. Smith, "Structuralelectronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K", Journal of the American Chemical Society, vol. 109, pp. 3639-3646, 1987. DOI: https://doi.org/10.1021/ja00246a021
  4. R. Wyckoff, Çrystal Structures", 2nd ed. Interscience, New York, vol. 1, 1964.
  5. K. V. K. Rao, S. V. N. Naidu, and L. Iyengar, "Thermal Expansion of Rutile and Anatase", Journal of the American Ceramic Society, vol. 53, pp. 124-126, 1970. DOI: https://doi.org/10.1111/j.1151-2916.1970.tb12051.x
  6. C. J. Howard, T. M. Sabine, and F. Dickson, "Structural and thermal parameters for rutile and anatase", Acta Crystallographica Section B: structural Science, vol. 47, pp. 462-468, 1991. DOI: https://doi.org/10.1107/S010876819100335X
  7. F. Labat, P. Baranek, C. Domain, C. Minot, and C. Adamo, "Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances
  8. of different exchange-correlation functionals", The Journal of Chemical Physics, vol. 126, pp. 154703(1-12), 2007. DOI: https://doi.org/10.1063/1.2717168
  9. W. J. Yin, S. Chen, J. H. Yang, X. G. Gong, Y. Yan, and S. H. Wei, .Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction", Applied Physics Letters, vol. 96, pp. 221901(1-3), 2010. DOI: https://doi.org/10.1063/1.3430005
  10. K. M. Glassford and J. R. Chelikowsky, "Structural and electronic properties of titanium dioxide", Physical Review B, vol. 46, pp. 1284-1298, 1992. DOI: https://doi.org/10.1103/PhysRevB.46.1284
  11. J. P. Perdew and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems", Physical Review B, vol. 23, pp. 5048-5079, 1981. DOI: https://doi.org/10.1103/PhysRevB.23.5048
  12. J. P. Perdew, K. Burke, M. Emzerhof, "Generalized Gradient Approximation Made Simple", Physical Review Letters, vol. 77, pp. 3865-3868, 1996. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
  13. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces", Physical Review Letters, vol. 100, pp. 136406(1-4), 2008. DOI: https://doi.org/10.1103/PhysRevLett.100.136406
  14. J. P. Perdew, J.A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, .Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation", Physical Review B, vol. 46, pp. 6671-6687, 1992. DOI: https://doi.org/10.1103/PhysRevB.46.6671
  15. B. Hammer, L. B. Hansen and J. K. Norskov, Ïmproved adsorption energetics within densityfunctional theory using revised Perdew-Burke-
  16. Ernzerhof functionals", Physical Review B, vol 59, pp. 7413-7421, 1999. DOI: https://doi.org/10.1103/PhysRevB.59.7413
  17. J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Çlimbing the Density Functional Ladder: Nonempirical Meta Generalized Gradient Approximation Designed for Molecules andSolids", Physical Review Letters, vol. 91, pp. 146401(1-4), 2003. DOI: https://doi.org/10.1103/PhysRevLett.91.146401
  18. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, "Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry", Physical Review Letters, vol. 103, pp. 026403(1-4), 2009. DOI: https://doi.org/10.1103/PhysRevLett.103.026403
  19. V. I. Anisimov, J. Zaane, O. K. Andersen, "Band theory and Mott insulators: Hubbard U instead of Stoner I", Physical Review B, vol.
  20. , pp. 943-954, 1991.
  21. G. Kresse and J. Hafner, .Ab initio molecular dynamics for liquid metals", Physical Review B, vol. 47, pp. 558-561(R) 1993; .Ab initio DOI: https://doi.org/10.1103/PhysRevB.47.558
  22. molecular-dynamics simulation of the liquidmetal? amorphous semiconductor transition in germanium". Physical Review B, vol. 49, pp. 14251-14269, 1994. DOI: https://doi.org/10.1103/PhysRevB.49.14251
  23. F. D. Murnaghan, "THE COMPRESSIBILITY OF MEDIA UNDER EXTREME PRESSURES", Proceedings of the National Academy Science, vol. 30, pp. 244-247, 1944. DOI: https://doi.org/10.1073/pnas.30.9.244
  24. T. Arlt, M. Bermejo, M. A. Blanco, L. Gerward, J. Z. Jiang, J. Staun Olsen, and J. M. Recio, "High-pressure polymorphs of anatase TiO2", Physical Review B, vol. 61, pp. 14414-14419, 2000. DOI: https://doi.org/10.1103/PhysRevB.61.14414
  25. R. C. Weast, ÇRC Handbook of Chemistry and physics", 64th ed.
  26. (CRC, Boca Raton, FL, 1983) 8

Descargas

Los datos de descargas todavía no están disponibles.