Skip to main navigation menu Skip to main content Skip to site footer

NaCl-salinity effect of on the growth and development of Chenopodium quinoa Willd plants

Abstract

The salts have the ability to accumulate often in the soil of different crops, as a result of water and fertilizers used. A greenhouse experiment was carried out with the objective of studying the response of the vegetative phases of quinoa plants (Chenopodium quinoa Willd) at ascending concentrations of sodium chloride (NaCl). The seeds of quinoa variety Soracá were sown in bags with soil from the municipality of Ventaquemada (Colombia). The soil of the bags was gradually salified with NaCl by the addition of 0.0; 0.1; 0.2 and 0.3 M. days were measured to six and eight true leaves, days to branching and appearance of panicle; besides measuring length of stem, number of leaves, number of ramifications, content of chlorophyll, fresh and dry matter of root, leaves and stems and pH and electrical conductivity; observing that the plants presented significant statistical differences in the phenological development as well as in the height, number of branches and electrical conductivity, concluding that doses close to or higher than 0.3M generate the death of the plants, however electrical conductivities lower than 15, 2 dS.m-1 allows the plant to reach grain formation.

Keywords

chlorophyll, electrical conductivity, vegetative phases, ramifications

PDF (Español)

References

[1] M. A. García-Parra, J. F. Garcia, D.I. Melo y Y. Deaquiz. “Respuesta agronómica de la quinua (Chenopodium quinoa Willd) variedad dulce de soracá a la fertilización en Ventaquemada – Boyacá”. Cultura científica. 15: 66-77. 2017. Recuperado de: https://www.jdc.edu.co/revistas/index.php/Cult_cient/article/view/28/134

[2] A. Hurtado-Salazar, D. Pereira da Silva, N. Ceballos-Aguirre & C. Horts-Bruckner. “Salinity tolerance of Passiflora tarminiana Coppens & Barney”. Revista Colombiana de Ciencias Hortícolas. 12(1): 11-19. 2018. Doi: https://dx.doi.org/10.17584/rcch.2018v12i17335

[3] F. Casierra-Posada, A. Carreño-Patiño, y J. Cutler. “Growth, fiber and Nitrogen content in Sisal Plants (Furcraea sp) Under NaCl Salinity”. Gesunde Pflanzen. 69(2): 83-89. 2017. Doi: https://dx.doi.org/10.1007/s10343-017-0390-z

[4] G. Wu, A. Peterson, C. Morris, K. Murphy. “Quinoa seed quality response to sodium cholide and sodium sulfate salinity”. Frontier Plants Science. 7:790. 2016. doi: https://dx.doi.org/10.3389/fpls.2016.00790

[5] B. Gong, D. Wen, K. Vanden, M. Wei, F. Yang, Q. Shi, y X. Wang. “Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters nutrient metabolism and the antioxidant system in tomato leaves”. Scientia Horticulturae157:1–12. 2013. Doi: https://dx.doi.org/10.1016/j.scienta.2013.03.032

[6] F. Casierra-Posada, C. Rodríguez y G. Fischer. Reducing negative effects of salinity in tomato (Solanum lycopersicumL.) plants by adding Leonardite to soil. Acta Horticulturae. 821: 133-140.2009. Doi: https://dx.doi.org/10.17660/ActaHortic.2009.821.14

[7] H. Sánchez, R. Lemeur, P. Damme y S-E. Jacobsen. “Ecophysiological Analysis of drought and salinity stress of quinoa (Chenopodium quinoa Willd)”. Food Reviews International. 10(1): 111-119. 2003. Doi: https://dx.doi.org/10.1081/FRI-120018874

[8] IGAC Instituto Geográfico Agustín Codazzi. Estudios generales de suelos y zonificación de tierras del departamento de Boyacá. Tomo II. Bogotá (Colombia). 159p. 2005.

[9] D. I. Melo. “Studio di Adattabilità della quinoa (Chenopodium quinoa Willd) in Italia settentrionale. Tesi di dottorato in Sistema Agroalimentare. Università Cattolica dell Sacro Cuore. 171p. 2016.

[10] V. Sosa-Zuniga, V. Brito, F. Fuentes y U. Steinfort. “Phenological growth stages of quinoa (Chenopodium quinoa Willd base on the BBCH scale”. Annals of Applied Biology. 2017. https://dx.doi.org/10.1111/aab.12358

[11] J. Torres, H. Vargas, G. Corredor y M. Reyes. “Caracterización morfo agronómica de diecinueve cultivares de quinua (Chenopodium quinoa Willd en la sabana de Bogotá. 17(3): 61-68. 2000.

[12] L. Taiz y E. Zeiger. “Fisiología vegetal”. Ed. Universitat Jaume I. 1338p. 2007.

[13] M. Maliro, V. Guwela, J. Nyaika y K. Murphy. “Preliminary studies of the performance of quinoa (Chenopodium quinoa Willd) Genotypes under irrigated and rainfed conditions of central Malawi”. Frontiers in Plant Science. 8(227). 2017. Doi: https://dx.doi.org/10.3389/fpls.2017.00227

[14] A. Zurita-Silva, F. Fuentes, P. Zamora, S-E. Jacobsen y A. Schwember. “Breeding quinoa (Chenopodium quinoa Willd): potencial and perspectives”. Molecular Breeding. 34(1). 2014. Doi. https://dx.doi.org/10.1007/s11032-014-0023-5

[15] G. Chilo, M. Vacca Molina, R. Carbajal, y M. Ochoa. “Efecto de la temperatura y la salinidad sobre la germinación y crecimiento de plántulas de dos variedades de Chenopodium quinoa”. Agriscientia. 16(1): 15-22. 2009. Recuperado de: http://www.scielo.org.ar/pdf/agrisc/v26n1/v26n1a03.pdf

[16] D. Bazile, S-E. Jacobsen, y A. Verniau. The global expansion of quinoa: Trends and limits. Frontiers in Plant Sciencie. 7(622). 2014. Doi: https://dx.doi.org/10.3389/fpls.2016.00622

[17] N. Núñez. “La quinua (Chenopodium quinoa Willd) alternativa de seguridad alimentaria para zonas desérticas”. Revista ciencia y Desarrollo. 19: 19-24. 2015.

[18] M. Riccardi, G. Mele, C. Pulvenio, A. Lavini, R. d’Andria y S-E. Jacobsen. “Non-destructive evaluation of clorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components”. Photosynthesis Resrearch.120(3): 263-272. 2014. Doi: https://doi.org/10.1007/s11120-014-9970-2

[19] L. Ochoa-Vargas, H. Balaguera-López, G. Ardila-Roa, E. Pinzón-Sandoval y J. Álvarez-Herrera. “Crecimiento y desarrollo de fruto de lulo (Solanum quitoense Lam) en el municipio de san Antonio del Tequendama (Colombia)”. Corpoica Cienc. Tecnol. Agropecuaria. 17(3): 347-359. 2016. Doi: http://dx.doi.org/10.21930/rcta.vol17_num3_art:512

[20] A. Akcin y E. Yalcin. “Effect of salinity stress on chlorophyll, carotenoid content, and proline in Salicornia prostrata Pall and Suaeda prosrata Pall subsp. Postrata (Amaranthaceae)”. Botanical Society of Sao Paulo. 39(1): 101-106. 2015. Doi: https://dx.doi.org/10.1007/s40415-015-0218-y

[21] Hhrysargyris, A., Michailidi, E. & Tzortzakis, N. (2018). Physiological and Bioquimical Response of Lavandula angustifolia to Salinity Under Mineral Foliar Application. Frontiers in plant Science. 9(489). https://dx.doi.org/10.3389/fpls.2018.00489

[22] S. Eisa, E. El-Samad, S. Hussin, E. Ali, M. Ebrahim, J. González, M. Ordano, L. Erazzú, N. El-Bordeny y A. Abdel-Ati. “Quinoa in Egypt-Plant density efffects on seed yield and nutritional quality in marginal regions”. Middle East Journal of Applied Science. 8(2): 515-522. 2018.

[23] M. A. Garcia-Parra, J. F. Garcia y D. C Carvajal. “Evaluación del efecto de la fertilización química y orgánica en la composición bromatológica de semillas de quinua (Chenopodium quinoa Willd) en Boyacá – Colombia”. Revista de Investigación Agraria y Ambiental. 9(2). 2018. Recuperado en: http://hemeroteca.unad.edu.co/index.php/riaa/article/view/2282/2569

[24] D. Bazile, D. Bertero, y C. Nieto. “Estado del arte de la quinua en el mundo 2013”. FAO (Santiago de Chile), CIRAD (Montpellier – Francia). 724p. ISBN: 978-92-5-308558-3. 2014.

[25] S. Eisa, M. Eid, A. El-Samad, S. Hussin, A. Abdel-Ati, N. El-Bordeny, S. Ali, M. Al-Sayed, M. Lotfy, A. Masoud, A. El-Naggar y M. Ebrahim. “Chenopodium quinoa Willd. A new cash crop halophyte for saline regions of Egypt”. Australian Journal of Crops Science. 11(3): 343-351. 2017. Doi: https://dx.doi.org/10.21475/ajcs.17.11.03.pne316

[26] J. F. García. “Principios generales de la agricultura orgánica”. Ed. Fundación Universitaria Juan de Castellanos. 123p. 2006.

Downloads

Download data is not yet available.