Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Some Remarks About the Cyclic Homology of Skew PBW Extensions / Algunas observaciones sobre la homología cíclica de extensiones PBW torcidas

Resumen

Abstract

We study the cyclic homology for a class of noncommutative polynomial rings known as skew
PBW extensions. We obtain explicit computations for some important families of such extensions
over fields. In particular, we consider the cyclic homology of skew PBW extensions of
derivation type, certain classes of Ore extensions, operator algebras, difusion algebras, quantum
algebras and 3-dimensional skew polynomial algebras.

 

Resumen

Estudiamos la homología cíclica de una clase de anillos de polinomios no conmutativos denominados
extensiones PBW torcidas. Obtenemos cálculos explícitos para algunas familias importantes de este tipo
de extensiones sobre cuerpos. En particular, consideramos la homología cíclica de las extensiones PBW
torcidas de tipo derivación, ciertas clases de extensiones de Ore, álgebras de operadores, álgebras de difusión, álgebras cuánticas y álgebras de polinomios torcidos 3-dimensionales.



Palabras clave

Cyclic homology, filtered rings, skew PBW extensions

PDF (English)

Citas

  1. V. A. Artamonov, “Derivations of skew PBW extensions”, Communications in Mathematics and Statistics, vol. 3, pp. 449-457, 2015. DOI: https://doi.org/10.1007/s40304-015-0067-9
  2. J. Block, “Cyclic Homology of Filtered Algebras”, K-Theory, vol. 1, pp. 515-518, 1987. DOI: https://doi.org/10.1007/BF00536983
  3. A. Connes, “Cohomologie Cyclique et Functeurs de Extn”, C. R. Math. Acad. Sci. Paris, vol. 296 , pp. 953-958, 1983.
  4. A. Connes, “Non-commutative Differential Geometry”, Publ. Math. IHES, vol. 62 , pp. 257- 360, 1985. DOI: https://doi.org/10.1007/BF02698807
  5. B.L. Feigin and B.L. Tsygan, “Additive KTheory, in K-Theory: Arithmetic and Geometry”, Lecture Notes in Math, vol. 1289 , pp.
  6. -209, 1988
  7. P. Feng and B. Tsygan, “Hochschild and Cyclic Homology of Quantum Groups”, Commun. Math. Phys., vol. 140, pp. 481-521, 1991. DOI: https://doi.org/10.1007/BF02099132
  8. C. Gallego and O. Lezama, “Gröbner Bases for Ideals of s-PBW Extensions”, Comm. Algebra, vol. 39, no. 1, pp. 50-75, 2011. DOI: https://doi.org/10.1080/00927870903431209
  9. N. R. González, Y. P. Suárez, “Ideales en el Anillo de Polinomios Torcidos R[x;s;d] ”, Ciencia en Desarrollo, vol. 5, no. 1, pp. 31- 37, 2014. DOI: https://doi.org/10.19053/01217488.3229
  10. J.A. Guccione and J.J. Guccione, “Hochschild and Cyclic Homology of Q-difference Operators”, J. Math. Sci. Univ. Tokyo, vol. 35, no. 3, pp. 413-422, 1995. DOI: https://doi.org/10.1215/kjm/1250518705
  11. J.A. Guccione and J.J. Guccione, “Hochschild and Cyclic Homology of Ore Extensions and Some Examples of Quantum Algebras”, KTheory, vol. 12, pp. 259-276, 1997. DOI: https://doi.org/10.1023/A:1007795614311
  12. C. Kassel, “L’homologie Cyclique des Algèbres Enveloppantes”, Invent. Math., vol. 91, pp. 221-251, 1988. DOI: https://doi.org/10.1007/BF01389366
  13. O. Lezama, J.P. Acosta and A. Reyes, “Prime ideals of skew PBW extensions”, Rev. Un. Mat. Argentina, vol. 56, no. 2, pp. 39-55, 2015.
  14. O. Lezama and A. Reyes, “Some Homological Properties of Skew PBW Extensions”, Comm. Algebra, vol. 42, pp. 1200-1230, 2014. DOI: https://doi.org/10.1080/00927872.2012.735304
  15. Loday, J.-L. and Quillen, D., “Homologie Cyclique et Homologie de L’Algèbre de Lie des Matrices”, C. R. Math. Acad. Sci. Paris, vol.
  16. , pp. 295-297, 1983.
  17. J.-L. Loday, Cyclic Homology. Springer- Verlag, sec.edit., 1998. DOI: https://doi.org/10.1007/978-3-662-11389-9
  18. D. Quillen, “Higher Algebraic K-Theory, in Algebraic K-Theory”, Lecture Notes in Math. vol. 341, Springer, Berlin 1973. DOI: https://doi.org/10.1007/BFb0067053
  19. A. Reyes, “Gelfand-Kirillov Dimension of Skew PBW Extensions”, Rev. Col. Mat. vol. 47, no. 1, pp. 95-111, 2013.
  20. A. Reyes, “Uniform dimension over skew PBW extensions”, Rev. Col. Mat., vol. 48, no. 1, pp. 79-96, 2014. DOI: https://doi.org/10.15446/recolma.v48n1.45196
  21. A. Reyes, “Jacobson’s conjecture and skew PBW extensions”, Rev. Integr. Temas Mat, vol. 32, no. 2, 139-152, 2014.
  22. A. Reyes, “Skew PBW Extensions of Baer, quasi-Baer, p.p. and p.q.-rings”, Rev. Integr. Temas Mat., vol. 33, no. 2, pp. 173-189, 2015. DOI: https://doi.org/10.18273/revint.v33n2-2015007
  23. A. L. Rosenberg, “Non-commutative Algebraic Geometry and Representations of Quantized Algebras”. Math. Appl., vol. 330. Kluwer Academic Publishers, 1995. DOI: https://doi.org/10.1007/978-94-015-8430-2
  24. H. Suárez, O. Lezama, A. Reyes, “Some relations between N-Koszul, Artin-Schelter regular and Calabi-Yau algebras with skew PBW extensions”, Ciencia en Desarrollo, vol. 6, no. 2, pp. 205-213, 2015. DOI: https://doi.org/10.19053/01217488.3791
  25. B.L. Tsygan, “Homology of Matrix Lie- Algebras over Rings and Hochschild Homology”, Uspekhi Mat. Nauk, vol. 38, pp. 217-218, DOI: https://doi.org/10.1070/RM1983v038n02ABEH003481
  26. C. Venegas, “Automorphisms for Skew PBW Extensions and Skew Quantum Polynomial Rings”, Comm. Algebra, vol. 43, no. 5, pp. 1877-1897, 2015. DOI: https://doi.org/10.1080/00927872.2013.879163

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede {advancedSearchLink} para este artículo.