Skip to main navigation menu Skip to main content Skip to site footer

Effects of paclobutrazol and mepiquat chloride on the growth and development of plantain Dominico Hartón (Musa AAB)

Supporting Agencies
University of Caldas

First symptoms of the effect of growth regulators on plantain. Photo: J.S. Arias-García

Abstract

Colombia is the fourth largest producer of plantain in the world, with a harvest of 3,539,252 t. Various biotic and abiotic factors affect yields, including phytoparasitic nematodes that are a major constraint in this crop. For this reason, strategies are being sought to improve the performance of this plant with this cosmopolitan pest. This research evaluated the effect of two hormonal regulators on the growth and development of the Dominico plantain. The experiment design had treatments that were divided plots, where the main plot corresponded to the type of product, and the sub-plot corresponded to the concentrations of paclobutrazol and mepiquat chloride in the different doses: 0, 250 and 500 mg L-1. The experiment unit consisted of ten plants with four replicates. The evaluated variables were plant height, diameter of the pseudostem, number of functional leaves, length and diameter of the roots, number of nematodes and variables for production quality. The two growth regulators reduced the plant height before emergence of the flower; paclobutrazol reduced the height by up to 40%, while mepiquat chloride reduced the height by up to 6.7%. There were no statistical differences in the production per plant, where the production with paclobutrazol was 14 kg/plant and, with mepiquat chloride, was 15 kg/plant. The control was 14.5 kg/plant. The use of growth regulators did not significantly restrict the damage caused by nematodes; however, paclobutrazol performed better as a growth regulator in the Dominico Hartón plants.

Keywords

Crop management, Yield, Overturned, Phytonematodes, Bioregulators

PDF

References

Albany, N. 2005. Comparative study of morphological parameters of Grand Nain banana (Musa AAA) after in vitro multiplication with growth retardans. Plant Cell 83(3), 357-361. Doi: 10.1007/s11240-005-6307-z

Araya, M. 1995. Efecto depresivo de ataques de Radopholus similis en banano Musa AAA. Corbana 20(43), 3-6.

Avelino, J., R. Babin, P. Fernandes, M.T. Hoopen, J.-B. Laurent K. Naudin, and A. Ratnadass. 2012. Incorporating plant species diversity in cropping systems for pest and disease risk management. In: Cirad, https://agritrop.cirad.fr/565028/1/document_565028.pdf; consulted: October, 2017.

Bautista, L.G., M.M. Bolaños, N.M. Asakawa, and B. Villegas. 2014. Respuesta de fitonematodos de plátano Musa AAB Simmonds a. Quindio, Colombia. Luna Azul 70(40), 69-84. Doi: 10.17151/luaz.2015.40.6

Berova, M., and Z. Zlatev. 2000. Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentum Mill.). Plant Growth Regul. 30(2), 117-123. 10.1023/A:1006300326975

Bose, S., R.K. Yadav, S. Mishra, R.S. Sangwan, A.K. Singh, B. Mishra, A.K. Srivastava, and N.S. Sangwan 2013. Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L. Plant Physiol. Biochem. 66, 150-158. Doi: 10.1016/j.plaphy.2013.02.011

Cavatte, R., L.C.C. Salomão, D.L. Siqueira, L.A. Peternelli, and P.C. Cavatte 2012. Redução do porte e produção das bananeiras 'Prata-Anã' e 'FHIA-01'tratadas com paclobutrazol. Rev. Bras. Frutic. 34(2), 356-365. Doi: 10.1590/S0100-29452012000200007

Cenicafé, Centro Nacional de Investigaciones de Café de Colombia. 2020. Plataforma agroclimática cafetera. In: https://agroclima.cenicafe.org/web/guest/condiciones-actuales consulted: December, 2020.

Chang, S., Z. Wu, Q. Zeng, J. Zhang, W. Sun, L. Qiao, and H. Shu. 2019. The effects for delaying banana seedling growth through spraying growing retardants on stem apex. Am. J. Plant Sci. 10(05), 813. Doi: 10.4236/ajps.2019.105059

Coyne, D.L., A. Omowumi, I. Rotifa, and S.O. Afolami. 2013. Pathogenicity and damage potential of five species of plant-parasitic nematodes on plantain (Musa spp., AAB genome) cv. Agbagba. Nematology 15(5), 589-599. Doi: 10.1163/15685411-00002704

De Souza, D.D., D.L. Siqueira, P.R. Cecon, and D. Santos. 2010. Micropropagação das bananeiras ‘prata-anã’ e ‘fhia 01’ a partir de explantes de plantas tratadas com paclobutrazol. Rev. Bras. Frutic. 32(2), 561-570. Doi: 10.1590/S0100-29452010005000059

El Sayed, H., A. El Sayed, and A.H.A. El Morsy. 2012. Response of productivity and storability of garlic (Allium sativum L.) to some potassium levels and foliar spray with mepiquat chloride (PIX). Int. Res. J. Agric. Sci. Soil Sci. 2(7), 298-305.

Fan, S., D. Zhang, C. Gao, S. Wan, C. Lei, J. Wang, X. Zuo, F. Dong, Y. Li, K. Shah, and M. Han. 2018. Mediation of flower induction by gibberellin and its inhibitor paclobutrazol: mRNA and miRNA integration comprises complex regulatory cross-talk in apple. Plant Cell Physiol. 59(11), 2288-2307. Doi: 10.1093/pcp/pcy154

FAO. 2018. FAOSTAT División de estadísticas de la FAO. Base da datos cultivos. http://www.fao.org/faostat/es/#data/QC; consulted: December, 2020.

FAO. 2018. FAOSTAT. División de estadísticas de la FAO. Base de datos cultivos. http://www.fao.org/faostat/es/#data/QC ; consulted: December, 2020.

Gopi, R., C.A.Jaleel, R. Sairam, G.M.A. Lakshmanan, M. Gomathinayagam, and R. Panneerselvam. 2007. Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L. Colloids Surf. B. Biointerfaces 60(2), 180-186. Doi: 10.1016/j.colsurfb.2007.06.003

Guzmán, O.A., J. Castaño, and B. Villegas. 2012. Efectividad de la sanidad de cormos de plátano dominico hartón (Musa AAB Simmonds), sobre nematodos fitoparásitos y rendimiento del cultivo. Rev. Acad. Colomb. Cienc. Exact. Fis. Nat. 36(138), 45-55.

Hassan, M.A., T.H. Pham, H. Shi, and J. Zheng. 2013. Nematodes threats to global food security. Acta Agr. Scand. 63(5), 420-425. Doi: 10.1080/09064710.2013.794858

Kamran, M., I. Ahmad, H. Wang, X. Wu, J. Xu, T. Liu, R. Ding, and Q. Han. 2018. Mepiquat chloride application increases lodging resistance of maize by enhancing stem physical strength and lignin biosynthesis. Field Crops Res. 224, 148-159. Doi: 10.1016/j.fcr.2018.05.011

Li-Na, C.-L. Li, F. Wu, S.-P. Li, S.-Q. Han, and M.-F. Li. 2018. Desuckering effect of KH2PO4 mixed with paclobutrazol and its influence on banana (Musa paradisiaca AA) mother plant growth. Sci. Hort. 240, 484-491. Doi: 10.1016/j.scienta.2018.06.033

Maia, E., D.L. Siqueira, L.C.C. Salomão, L.A. Peternelli, M.C. Ventrella, and R.P.Q. Cavatte. 2008. Desenvolvimento de bananeiras cultivadas em ambiente protegido sob efeito do paclobutrazol aplicado nas folhas. Rev. Bras. Frutic. 30(4), 989-993. Doi: 10.1590/S0100-29452008000400025

MADR (2018). Ministerio de Agricultura y Desarrollo Rural. Indicadores e instrumentos cadena de plátano. https://sioc.minagricultura.gov.co/Platano/Documentos/2018-10-30%20Cifras%20Sectoriales.pdf; consulted: December, 2020.

Pal, S., J. Zhao, A. Khan, N.S. Yadav, A. Batushansky, S. Barak, B. Rewald, A. Fait, N. Lazarovitch, and S. Rachmilevitch. 2016. Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Sci. Rep. 6, 1-13. Doi: 10.1038/srep39321

Partida, L., T.J. Velázquez, B. Acosta, F. Ayala, T. Díaz, J.F. Inzunza, and J.E. Cruz. 2007. Paclobutrazol y crecimiento de raíz y parte aérea de plántulas de pimiento morrón y berenjena. Rev. Fitotec. Mex. 30(2), 145-149.

Quintás, G., S.Garrigues, A. Pastor, and M. Guardia. 2004. FT-Raman determination of mepiquat chloride in agrochemical products. Vib. Spectrosc. 36(1), 41-46. Doi: 10.1016/j.vibspec.2004.02.007

Rademacher, W. 2015. Plant growth regulators: backgrounds and uses in plant production. J. Plant Growth Regul. 34(4), 845-872. Doi: 10.1007/s00344-015-9541-6

Ramírez, H., C. Amado-Ramírez, A. Benavides-Mendoza, V. Robledo-Torres, and A. Martínez-Osorio. 2010. Prohexadiona-CA, AG3, ANOXA y BA modifican indicadores fisiologicos y bioquimicos en Chile mirador. Rev. Chapingo Ser. Hortic. 16(2), 83-89.

Roderick, H., E. Mbiru, D. Coyne, L. Tripathi, and H.J. Atkinson. 2012. Quantitative digital imaging of banana growth suppression by plant parasitic nematodes. PloS One 7(12), e53355. Doi: 10.1371/journal.pone.0053355

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.