Skip to main navigation menu Skip to main content Skip to site footer

Genetics parameters and path analysis in Cannabis sativa L.

Inflorescence of C. sativa. Photo: I. Pastrana-Vargas

Abstract

The ostracism to which the species was subjected in the last century generated a weak use of genetic variability in the genetic improvement of characteristics of interest. This study aimed to estimate genetic parameters, correlation, and path analysis for 13 agronomic traits, cannabidiol (CBD) and tetrahydrocannabinol (THC) content in 10 cannabis genotypes from different departments of Colombia. The study was conducted under greenhouse conditions with a polycarbonate cover and anti-aphid mesh at the La Esperanza farm in Pueblo Bello, Cesar (North Colombia). A randomized complete block design with 10 treatments (genotypes) and three replicates was used. Each experimental unit consisted of 20 plants obtained from mother plants and transplanted at 14 cm between rows and between plants. Significant differences (P≤0.01) were detected between genotypes for all traits and THC and CBD content. Heritability in a broad sense showed values higher than 82% for all the traits studied. Genetic variability between genotypes was detected for number of leaflets, internode length of main stem, length of petiole, central leaflet-length, width of central leaflet, number of stems per plant, CBD, and THC, which allowed obtaining genetic gains higher than 30%. There was a high, inverse, and significant phenotypic and genotypic correlation between the percentage of CBD and THC (r=-0.93**). Overall, width of central leaflet direct and indirect effects explains the association level between CBD and THC with the correlated traits. It is possible to increase CBD and THC by selecting genotypes with higher width of central leaflet.

Keywords

Cannabinoids, Correlations, Heritability, Genetic gain, Genetic variability

PDF

References

  • Araméndiz-Tatis, H., C. Cardona-Ayala, M. Espitia-Camacho, A. Herrera-Contreras, and A. Villalba-Soto. 2023. Agronomic evaluation of Cannabis sativa (L.) cultivars in northern Colombia. Rev. Colomb. Cienc. Hortic. 17(1), e15695. Doi: https://doi.org/10.17584/rcch.2023v17i1.15695
  • Atehortua, L. 2018. Nuevas fronteras científicas y tecnológicas para el mejoramiento y la producción de cannabis. Canna World Cong. 1(2), 41-50.
  • Babaei, M. and L. Ajdanian. 2020. Screening of different Iranian ecotypes of cannabis under water deficit stress. Sci. Hortic. 260, 108904. Doi: https://doi.org/10.1016/j.scienta.2019.108904.
  • Bevan, L., M. Jones, and Y. Zheng. 2021. Optimisation of nitrogen, phosphorus, and potassium for soilless production of Cannabis sativa in the flowering stage using response surface analysis. Front. Plant Sci. 12, 764103. Doi: https://doi.org/10.3389/fpls.2021.764103
  • Burgel, L., J. Hartung, A. Pflugfelder, and S. Graeff-Hönninger. 2020. Impact of growth stage and biomass fractions on cannabinoid content and yield of different hemp (Cannabis sativa L.) genotypes. Agronomy 10(3), 372. Doi: https://doi.org/10.3390/agronomy10030372
  • Campell, L.G., J. Dufresne, and S.A. Sabatino. 2020. Cannabinoid inheritance relies on complex genetic architecture. Cannabis Cannabinoid Res. 5(1), 105-106. Doi: https://doi.org/10.1089/can.2018.0015
  • Cascini, F., A. Farcomeni, D. Migliorini, L. Lucini, L. Baldassarri, I. Boschi, S. Martello, S. Amaducci, and J. Bernardi. 2019. Highly predictive genetic markers distinguish drug-type from fiber-type Cannabis sativa L. Plants 8(11), 496. Doi: https://doi.org/10.3390/plants8110496
  • CND, Commission on Narcotic Drugs. 2020. Statements following the voting on the WHO scheduling recommendations on cannabis and cannabis-related substances. E/CN.7/2020/CRP.24. In: https://www.unodc.org/documents/commissions/CND/CND_Sessions/CND_63Reconvened/ECN72020_CRP24_V2007524.pdf; consulted: February, 2024.
  • Cruz, C. 2020. Programa GENES V.1990.2020-15 - Aplicativo computacional em genética e estatística. In: Universidade Federal de Viçosa, https://www.ufv.br/dbg/genes/genes.htm; consulted: July, 2020.
  • Dufresnes, C., C. Jan, F. Bienert, J. Goudet, and L. Fumagalli. 2017. Broad-scale genetic diversity of Cannabis for forensic applications. PLoS ONE 12(1), e0170522. Doi: https://doi.org/10.1371/journal.pone.0170522
  • Feder, C.L., O. Cohen, A. Shapira, I. Katzir, R. Peer, O. Guberman, S. Procaccia, P. Berman, M. Flaishman, and D. Meiri. 2021. Fertilization following pollination predominantly decreases phytocannabinoids accumulation and alters the accumulation of terpenoids in cannabis inflorescences. Front. Plant Sci. 12, 753847. Doi: https://doi.org/10.3389/fpls.2021.753847
  • García-Tejero, I., A. Hernández, C. Ferreiro-Vera, V.H. Duran Zuazo, J. Hidalgo, C. Sánchez-Carnerero and S. Casano. 2020. Yield of new hemp varieties for medical purposes under semi-arid Mediterranean environment conditions. Comun. Sci. 11, e3264. Doi: https://doi.org/10.14295/cs.v11i0.3264
  • Hallauer, A.R., J.B. Miranda Filho, and M.B. Carena. 2010. Quantitative genetics in maize breeding. pp. 577-653. In: Quantitative genetics in maize breeding. Handbook of plant breeding. Vol. 6. Springer, New York, NY. Doi: https://doi.org/10.1007/978-1-4419-0766-0_12
  • Hemavathy, A.T., N. Shunmugavalli, and G. Anand. 2015. Genetic variability, correlation and path co-efficient studies on yield and its components in mungbean [Vigna radiata (L.) Wilezek]. Legume Res. 38(4), 442-446. Doi: https://doi.org/10.5958/0976-0571.2015.00050.8
  • Johnson, H.W., H.F. Robinson, and R.E. Comstock. 1955. Estimates of genetic and environmental variability in soybeans. Agron J. 47(7), 314-318. Doi: https://doi.org/10.2134/agronj1955.00021962004700070009x
  • Manggoel, W.N., M.I. Uguru, O.N. Ndam, and M.A. Dasbak. 2012. Genetic variability, correlation, and path coefficient analysis of some yield components of ten cowpea [Vigna unguiculata (L.) Walp] accessions. J. Plant Breed. Crop Sci. 4(5), 80-86.
  • Marks, M.D., L. Tian, J.P. Wenger, S.N. Omburo, W. Soto-Fuentes, J. He, D.R. Gang, G.D. Weiblen, and R.A. Dixon. 2009. Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J. Exp. Bot. 60(13), 3715-3726. Doi: https://doi.org/10.1093/jxb/erp210
  • Martínez. V., A.I. De-Hond, A. Borelli, R. Capasso, M.D del Castillo, and R. Abalo. 2020. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: useful nutraceuticals? Int. J. Mol. Sci. 21(9), 3067. Doi: https://doi.org/10.3390/ijms21093067
  • Minsalud, Colombia Ministerio de Salud y Protección Social. 2018. Decreto 631, por el cual se modifica el artículo 2.8.11; 11.1 y se adiciona el numeral 15 al artículo 2.8.11.9.1. del Decreto 780 de 2016. Bogota.
  • Naim-Feil, E., E.J. Breen, L.W. Pembleton, L.E. Spooner, G.C. Spangenberg, and N.O.I. Cogan. 2022. Empirical evaluation of inflorescences’ morphological attributes for yield optimization of medicinal Cannabis cultivars. Front. Plant Sci. 13, 858519. Doi: https://doi.org/10.3389/fpls.2022.858519
  • Pessoa, A.M.S., C.H.C. Bertini, E.B.L. Castro, L.M. Freitas, and L.B.R. Araújo. 2023. Genetic parameters and selection indices of cowpea genotypes for green grain production. Rev. Caatinga 36(2), 310-319. Doi: http://doi.org/10.1590/1983-21252023v36n208rc
  • Poniatowska, J., K. Panasiewicz, M. Szalata, L. Zarina, S. Zute, and K. Wielgus. 2022. Variability of cannabinoid yields of fibre hemp cultivars depending on the sowing density and nitrogen fertilisation. Plant Soil Environ. 68(11), 525-532. Doi: https://doi.org/10.17221/223/2022-PSE
  • Richins, R.D., L. Rodriguez-Uribe, K. Lowe, R. Ferral, and M.A. O'Connell. 2018 Accumulation of bioactive metabolites in cultivated medical Cannabis. PLoS ONE 13(7), e0201119. Doi: https://doi.org/10.1371/journal.pone.0201119
  • Robinson, H., R.E. Comstock, and P.H. Harvey. 1949. Estimates of heritability and degree of dominance in corn. Agron. J. 41(8), 353-359. Doi: https://doi.org/10.2134/agronj1949.00021962004100080005x
  • Saloner, A. and N. Bernstein. 2020. Response of medical cannabis (Cannabis sativa L.) to nitrogen supply under long photoperiod. Front. Plant Sci. 11, 572293. Doi: https://doi.org/10.3389/fpls.2020.572293
  • Small, E. 2018. Dwarf germplasm: the key to giant Cannabis hempseed and cannabinoid crops. Genet Resour. Crop Evol. 65, 1071-1107. Doi: https:doi.org/10.1007/s10722-017-0597-y
  • Trancoso, I., G.A.R. Souza, P.R. Santos, K.D. Santos, R.M.S.N. Miranda, A.L.P.M. Silva, D.Z. Santos, I.F. García-Tejero, and E. Campostrini. 2022. Cannabis sativa L.: crop management and abiotic factors that affect phytocannabinoid production. Agronomy 12, 1492. Doi: https://doi.org/10.3390/agronomy12071492
  • Tsaliki, E., A. Kalivas, Z. Jankauskiene, M. Irakli, C. Cook, I. Grigoriadis, I. Panoras, I. Vasilakoglou, and K. Dhima. 2021. Fibre and seed productivity of industrial hemp (Cannabis sativa L.) varieties under Mediterranean conditions. Agronomy 11(1), 171. Doi: https://doi.org/10.3390/agronomy11010171
  • Vergara, D., C. Feathers, E.L. Huscher, B. Holmes, J.A. Haas, and N.C. Kane. 2021. Widely assumed phenotypic associations in Cannabis sativa lack a shared genetic basis. PeerJ 20(9), e10672. Doi: https://doi.org/10.7717/peerj.10672
  • Weldemichael, G., S. Alamerew, and T. Kufa. 2017. Genetic variability, heritability, and genetic advance for quantitative traits in coffee (Coffea arabica L.) accessions in Ethiopia. Afr. J. Agric. Res. 12(21), 1824-1831. Doi: https://doi.org/10.5897/AJAR2016.12059
  • Yamamuro, T., H. Segawa, K. Kuwayama, K. Tsujikawa, T. Kanamori, and Y.T. Iwata. 2021. Rapid identification of drug-type and fiber-type cannabis by allele specific duplex PCR. Forensic Sci. Int. 318, 110634. Doi: https://doi.org/10.1016/j.forsciint.2020.110634

Downloads

Download data is not yet available.

Most read articles by the same author(s)