Quality, fruit retention and ecophysiology of 'Hass' avocado grown at two altitudes in the Andean tropics of Colombia





Ecophysiology, Productivity, Canopy, Fruit abscission, Microclimate


The expansion of 'Hass' avocado areas in the Colombian territory added to the problems associated with production, requires advancing the research efforts in order to elucidate the behavior of avocado in the conditions of the Andean tropics of Colombia. The aim of this study was to determine the effect of photosynthetically active radiation (PAR), ambient temperature, relative humidity and cardinal position of the inflorescences on the retention and final growth of 'Hass' avocado fruits in two contrasting zones of the Andean tropics of Colombia. The study was conducted in two commercial orchards located in different altitudinal zones in the department of Caldas, Colombia, Villamaría at 2,400 m above sea level (m a.s.l.) (5º01'05'' N) classified as a humid cold climate and Aranzazu at 1,900 m a.s.l. (5º18'40'' N) with semi-humid temperate climate. Evaluations were conducted on four five-year-old 'Hass' avocado trees per orchard. Monitoring was carried out on number of inflorescences that developed in each quadrant was determined and that thus learned the effect of PAR, temperature and humidity on floral development and identified the most reproductively successful quadrant of the trees in the two zones. Initial fruit set and fruit retention over time were quantified at each cardinal point of the tree. A completely randomized experimental design and Tukey's comparison of means was used. Significant differences were found PAR incidence, ambient temperature, air humidity, fruit weight and diameter according to cardinal location on the tree and locality, epidermal roughness of the fruit was higher in the lower altitude zone. The location of the different quadrants and the incidence of environmental factors it had an effect in fruit set, the final retention, size and quality of fruit at two different altitude and climatic zones of the Andean tropics of Colombia. The highest fruit retention was obtained at 1,900 m a.s.l. in the northern and western quadrants, while fruit weight and diameter were highest at 2,400 m a.s.l.


Download data is not yet available.

Author Biography

Alejandro Hurtado-Salazar, Universidad de Caldas, Manizales

Departamento de Produccion Agropecuaria


Abraha, M.G. and M.J. Savage. 2010. Validation of a three-dimensional solar radiation interception model for tree crops. Agric. Ecosyst. Environ. 139(), 636-652. Doi: https://doi.org/10.1016/j.agee.2010.10.010

Acosta-Rangel, A., R. Li, P. Mauck, L. Santiago, and C.J. Lovatt. 2021. Effects of temperature, soil moisture and light intensity on the temporal pattern of floral gene expression and flowering of avocado buds (Persea americana cv. Hass). Sci. Hortic. 280, 109940. Doi: https://doi.org/10.1016/j.scienta.2021.109940

Alcaraz, M.L. and J.I. Hormaza. 2014. Optimization of controlled pollination in avocado (Persea americana Mill. Lauraceae). Sci. Hortic. 180, 79-85. Doi: https://doi.org/10.1016/j.scienta.2014.10.022

Alcaraz, M.L. and J.I. Hormaza. 2021. Fruit set in avocado: Pollen limitation, pollen load size, and selective fruit abortion. Agronomy 11(8), 1603. Doi: https://doi.org/10.3390/agronomy11081603

Alcaraz, M.L., M. Montserrat, and J.I. Hormaza. 2011. In vitro pollen germination in avocado (Persea americana Mill.): Optimization of the method and effect of temperature. Sci. Hortic. 130(1),152-156. Doi: https://doi.org/10.1016/j.scienta.2011.06.030

Alon, E., O. Shapira, T. Azoulay-Shemer, and L. Rubinovich. 2022. Shading nets reduce canopy temperature and improve photosynthetic performance in ‘Pinkerton’ avocado trees during extreme heat events. Agronomy 12(6), 1360. Doi: https://doi.org/10.3390/agronomy12061360

Álvarez-Bravo, A. and S. Salazar-García. 2017. Las condiciones ambientales determinan la rugosidad de la piel del fruto de aguacate ‘Hass’. Rev. Mex. Cienc. Agríc. (Pub. Esp. Num. 19), 4063-4073. Doi: https://doi.org/10.29312/remexca.v0i19.673

Aounallah, M.K., S.B.M. Hammami, R. Farah, A. Sahli, and T. Bettaieb. 2017. Flower development and timing of avocado (Persea americana) growing under Tunisian conditions. Acta Hortic. 1160, 397-402. Doi: https://doi.org/10.17660/ActaHortic.2017.1160.57

Arias, J.S., A. Hurtado-Salazar, and N. Ceballos-Aguirre. 2021. Current overview of Hass avocado in Colombia. Challenges and opportunities: a review. Cienc. Rural. 51(8), e20200903. Doi: https://doi.org/10.1590/0103-8478cr20200903

Bergh, B. and N. Ellstrand. 1986. Taxonomy of the avocado. Calif. Avocado Soc. Yrbk. 70, 135-146.

Bertling, I. and A.K. Cowan. 1998. Effect of photo-inhibition on fruit growth and development in Hass avocado. S. A. Avocado Growers' Assoc. Yrbk. 21, 36-38.

Boldingh, H.L, M.L. Alcaraz, T.G. Thorp, P.E.H. Minchin, N. Gould, and J.I. Hormaza. 2016. Carbohydrate and boron content of styles of ‘Hass’ avocado (Persea americana Mill.) flowers at anthesis can affect final fruit set. Sci. Hortic. 198, 125-131. Doi: https://doi.org/10.1016/j.scienta.2015.11.011

Bower, J.P. 1978. The effects of shade and water relations in the avocado cv. Edranol. S. A. Avocado Growers' Assoc. Res. Rep. 2, 59-61.

Carvalho, C.P., J. Bernal, M.A. Velásquez, and J.R. Cartagena. 2015. Fatty acid content of avocados (Persea americana Mill. cv. Hass) in relation to orchard altitude and fruit maturity stage. Agron. Colomb. 33(2), 220-227. Doi: https://doi.org/10.15446/agron.colomb.v33n2.49902

Chung, S.W., H. Rho, C.K. Lim, M.K. Jeon, S. Kim, Y.J. Jang, and H.J. An. 2022. Photosynthetic response and antioxidative activity of ‘Hass’ avocado cultivar treated with short-term low temperature. Sci. Rep. 12, 11593. Doi: https://doi.org/10.1038/s41598-022-15821-3

Davenport, T.L. 2011. Avocado flowering. pp. 257-289. In: Janick, J. (ed.) Horticultural Reviews. Vol 8. AVI Publishing, Westport, CN. Doi: https://doi.org/10.1002/9781118060810.ch7

Dixon, J. 2007. Shoot growth of ‘Hass’ avocado trees in ‘on’ and ‘off’ flowering years in the western bay of plenty. N. Z. Avocado Growers’ Assoc. Ann. Res. Rep. 7, 41-48.

Dixon, J. and D. Sher. 2002. Pollination of avocados. N. Z. Avocado Growers’ Assoc. Ann. Res. Rep. 2, 1-9.

FAO. 2022. Statistical Database Faostat. In: https://www.fao.org/faostat/en/#home; consulted: February, 2023.

Fischer, G., A. Parra-Coronado, and H.E. Balaguera-López. 2022. Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agron. Colomb. 40(2), 212-227. Doi: https://doi.org/10.15446/agron.colomb.v40n2.101854

Garner, L.C. and C.J. Lovatt. 2016. Physiological factors affecting flower and fruit abscission of ‘Hass’ avocado. Sci. Hortic. 199, 32-40. Doi: https://doi.org/10.1016/j.scienta.2015.12.009

Henao-Rojas, J.C., J.H. López, N.W. Osorio, and J.G. Ramírez-Gil. 2019. Fruit quality in Hass avocado and its relationships with different growing areas under tropical zones. Rev. Ceres 66(5), 341-350. Doi: https://doi.org/10.1590/0034-737X201966050003

Hofman, P.J. and M. Jobin-Decor. 1999. Effect of fruit sampling and handling procedures on the percentage dry matter, fruit mass, ripening and skin colour of 'Hass' avocado. J. Hortic. Sci. Biotechnol. 74, 277-282. Doi: https://doi.org/10.1080/14620316.1999.11511108

ICA, Instituto Colombiano Agropecuario. 2016. Resolución 448, Por medio de la cual se establecen los requisitos para el registro ante el ICA de los predios de producción de vegetales para exportación en fresco, el registro de los exportadores y el registro de las plantas empacadoras de vegetales para la exportación en fresco. Bogota.

ICA, Instituto Colombiano Agropecuario. 2017. Resolución 30021, Por medio del cual se establecen los requisitos para la Certificación en Buenas Prácticas Agrícolas en producción primaria de vegetales y otras especies para consumo humano. Bogota.

Jones, M.B. 1985. Plant microclimate. pp. 26-40. In: Coombs, J., D.O. Hall, S.P. Long, and J.M.O. Scurlock (eds.). Techniques in bioproductivity and photosynthesis. 2nd ed. Pergamon Press, Oxford. Doi: https://doi.org/10.1016/B978-0-08-031999-5.50013-3

Kviklys, D., J. Viškelis, M. Liaudanskas, V. Janulis, K. Laužikė, G. Samuolienė, N. Uselis, and J. Lanauskas. 2022. Apple fruit growth and quality depend on the position in tree canopy. Plants 11(2), 196. Doi: https://doi.org/10.3390/plants11020196

Lahav, E. and D. Zamet. 1999. Flowers, fruitlets and fruit drop in avocado tree. Rev. Chapingo Ser. Hortic. 5, 95-100.

Lovatt, C. 2010. Alternate bearing of ‘Hass’ avocado. Calif. Avocado Soc. Yrbk. 93, 125-140. http://www.avocadosource.com/CAS_Yearbooks/CAS_93_2010/CAS_2010_V93_PG_125-140.pdf; consulted: February, 2023.

MADR, Ministerio de Agricultura y Desarrollo Rural. 2021. Cifras Sectoriales de la cadena productiva aguacate. In: https://sioc.minagricultura.gov.co/Aguacate/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf; consulted: September, 2022.

Magrach, A. and M.J. Sanz. 2020. Environmental and social consequences of the increase in the demand for ‘superfoods’ world‐wide. People and Nature 2(2), 267-278. Doi: https://doi.org/10.1002/pan3.10085

Marques, J.R., P.J. Hofman, and A.H. Wearing. 2006. Between-tree variation in fruit quality and fruit mineral concentrations of Hass avocados. Aust. J. Exp. Agric. 46(9), 1195-1201. Doi: https://doi.org/10.1071/EA04051

Martínez, R., D. Ruiz, M. Andrade, L. Blacutt, D. Pabón, E. Jaimes, G. León, M. Villacís, J. Quintana, E. Montealegre, and C. Euscátegui. 2011. Synthesis of the climate of the tropical Andes. pp. 97-109. In: Herzog, S.K., R. Martínez, P.M. Jørgensen, and H. Tiessen (eds.). Climate change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI); Scientific Committee on Problems of the Environment (SCOPE), Paris.

Mditshwa, A., L.S. Magwaza, and S.Z. Tesfay. 2019. Shade netting on subtropical fruit: Effect on environmental conditions, tree physiology and fruit quality. Sci. Hortic. 256, 108556. Doi: https://doi.org/10.1016/j.scienta.2019.108556

Medina-Carrillo, R.E., S. Salazar-García, and J. González-Valdivia. 2017. Fitoquímicos, nutrimentos y factores ambientales asociados a la rugosidadde la piel del aguacate ‘Hass’ en tres regiones de México. Rev. Mex. Cienc. Agric. (Pub. Esp. 19), 3869-3884. Doi: https://doi.org/10.29312/remexca.v0i19.656

Menzel, C.M. and M.D. Le Lagadec. 2014. Increasing the productivity of avocado orchards using high-density plantings: A review. Sci. Hortic. 177, 21-36. Doi: https://doi.org/10.1016/j.scienta.2014.07.013

Pattemore, D.E., M.N. Buxton, B.T. Cutting, H.M. McBrydie, R.M. Goodwin, and A. Dag. 2018. Low overnight temperatures delay ‘Hass’ avocado (Persea americana) female flower opening, leading to nocturnal flowering. J. Pollinat. Ecol. 23, 127-135. Doi: https://doi.org/10.26786/1920-7603(2018)12

Renner, S.S. 2007. Synchronous flowering linked to changes in solar radiation intensity. New Phytol. 175(2), 195-197. Doi: https://doi.org/10.1111/j.1469-8137.2007.02132.x

Rocha-Arroyo, J.L., S. Salazar-García, A.E. Bárcenas-Ortega, I.J.L. González-Durán, and LE.. Cossio-Vargas. 2011. Phenology of 'Hass' avocado in Michoacán. Rev. Mex. Cienc. Agric. 2(3), 303-316.

Salazar-García, S., R.E. Medina-Carrillo, and A. Álvarez-Braxvo. 2016. Evaluación inicial de algunos aspectos de calidad del fruto de aguacate ‘Hass’ producido en tres regiones de México. Rev. Mex. Cienc. Agric. 7(2), 277-289. Doi: https://doi.org/10.29312/remexca.v7i2.343

Scholefield, P., J. Walcott, P. Kriedemann, and A. Ramadasan. 1980. Some environmental effects on photosynthesis and water relations of avocado leaves. Calif. Avocado Soc. Yrbk. 64, 93-105.

Sharon, Y. 1999. Aspects of the water economy of Hass avocado trees (Persea americana cv. Hass). I. Plant water status and gas exchange. S. A. Avocado Growers' Assoc. Yrbk. 22, 106-109.

Silva, S.R., T.E. Cantuarias-Avilés, B. Chiavelli, M.A. Martins, and M.S. Oliveira. 2017. Phenological models for implementing management practices in rain-fed avocado orchards. Pesqui. Agropecu. Trop. 47(3), 321-327. Doi: https://doi.org/10.1590/1983-40632016v4747140

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd ed. U.S. Department of Agriculture Handbook 436. Natural Resources Conservation Service, USDA, Washington, DC.

Wang, H., H. Feng, Y. Luo, and A. Zhang. 2007. Produce surface characteristics affect product quality and safety. Acta Hortic. 746, 131-138. Doi: https://doi.org/10.17660/ActaHortic.2007.746.15

Wilkie, J., J. Conway, J. Griffin, and H. Toegel. 2019. Relationships between canopy size, light interception and productivity in conventional avocado planting systems. J. Hortic. Sci. Biotechnol. 94(4), 481-487. Doi: https://doi.org/10.1080/14620316.2018.1544469

Wolstenholme, B.N. and A.W. Whiley. 1999. Ecophysiology of the avocado (Persea americana Mill.) tree as a basis for pre-harvest management. Rev. Chapingo Ser. Hortic. 5, 77-88.

Yeang, H.-Y. 2007. Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity. New Phytol. 175(2), 283-289. Doi: https://doi.org/10.1111/j.1469-8137.2007.02089.x

Wen, Y., S.-C. Su, L.-Y. Ma, S.-Y. Yang, Y.-W. Wang, and X.-N. Wang. 2018. Effects of canopy microclimate on fruit yield and quality of Camellia oleifera. Sci. Hortic. 235, 132-141. Doi: https://doi.org/10.1016/j.scienta.2017.12.042



  • Abstract
  • PDF

How to Cite

Arias-García, J S, Ruden, S, Cruz, V, Hurtado-Salazar, A, & Ceballos-Aguirre, N. (2023). Quality, fruit retention and ecophysiology of ’Hass’ avocado grown at two altitudes in the Andean tropics of Colombia. Revista Colombiana de Ciencias Hortícolas, 17(2), e15861. https://doi.org/10.17584/rcch.2023v17i2.15861



Fruits section