Skip to main navigation menu Skip to main content Skip to site footer

Application of molecular techniques in soil microbiology for the identification of bacteria with agricultural potential: a review and bibliometric analysis

Amount of scientific production in the years 2000-2022 in the sub­ject of study by year. Photo: C.A. Dodino

Abstract

The excessive use of agrochemicals and poor agricultural practices have increased the negative effects on soil and crop biodiversity. In that sense, there is a need to identify potential bacteria by molecular techniques for sustainable agricultural production. The objective of this article was to develop a systematic and bibliometric mapping of the research carried out applying molecular techniques in soil microbiology for the identification of bacteria with agricultural potential. A search for research related to molecular techniques used for the identification of bacteria with agricultural potential was carried out in the Web of Science and Scopus databases, which were classified and analyzed by means of the R studio software. The origin, theoretical reference, bibliometric study and networks on the proposed topic were analyzed from the research obtained. A total of 527 researches related to molecular techniques used for the identification of bacteria with agricultural potential were reported, increasing by 52.75% in the last five years, with an annual growth rate of 17.4%, with India standing out as the country with the highest number of publica­tions, contributing 25% of researches worldwide. Sequencing and PCR are the most common techniques to identify potential microorganisms, being Bacillus, Pseudomonas, Enterobacter and Acinetobacter the most frequent bacterial genera to be identified due to mechanisms used to favor sustainable agricultural production systems.

Keywords

Characterization, PCR, Rhizobacteria, Sustainable agriculture

PDF

References

  1. Acevedo, J., S. Robledo, and M.Z. Sepúlveda. 2021. Subáreas de internacionalización de em­prendimientos: una revisión bibliográfica. Econ. CUC 42(1), 249-268. Doi: https://doi.org/10.17981/econcuc.42.1.2021.Org.7
  2. Aeron, A., R.C. Dubey, and D.K. Maheshwari. 2020. Characterization of a plant-growth-promoting non-nodulating endophytic bacterium (Stenotrophomonas maltophilia) from the root nodules of Mucuna utilis var. capitata L. (Safed Kaunch). Can. J. Microbiol. 66(11), 670-677. Doi: https://doi.org/10.1139/cjm-2020-0196
  3. Aldayel, M.F. and A. Khalifa. 2021. Isolation and characterization of bacteria from tomato and assessment of its plant growth-promoting traits in three economically important crops in Al-Ahsa region, Saudi Arabia. J. Environ. Biol. 42, 973-981. Doi: https://doi.org/10.22438/jeb/42/4/MRN-1758
  4. Aldonate, M.L., P. Jiménez, and E.L. Ulla. 2019. Caracterización de rizobacterias nativas y su efecto en la promoción de crecimiento de garbanzo (Cicer arietinum L.) en condiciones controladas. Rev. Agron. Noroeste Arg. 39(2), 89-98.
  5. Alkorta, I., A. Aizpurua, P. Riga, I. Albizu, I. Amézaga, and C. Garbisu. 2003. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health 18(1), 65-73. Doi: https://doi.org/10.1515/reveh.2003.18.1.65
  6. Alonso, S., F.J. Cabrerizo, E. Herrera-Viedma, and F. Herrera. 2009. h-Index: a review focused in its variants, computation and standardization for different scientific fields. J. Informetr. 3(4), 273-289. Doi: https://doi.org/10.1016/j.joi.2009.04.001
  7. Aloo, B.N., E.R. Mbega, B.A. Makumba, R. Hertel, and R. Daniel. 2020. Molecular identification and in vitro plant growth-promoting activities of culturable potato (Solanum tuberosum L.) rhizobacteria in Tanzania. Potato Res. 64(1), 67-95. Doi: https://doi.org/10.1007/s11540-020-09465-x
  8. Alotaibi, F., M. St-Arnaud, and M. Hijri. 2022. In-depth characterization of plant growth promotion potentials of selected alkanes-degrading plant growth-promoting bacterial isolates. Front. Microbiol. 13, 863702. Doi: https://doi.org/10.3389/fmicb.2022.863702
  9. Andleeb, S., I. Shafique, A. Naseer, W.A. Abbasi, S. Ejaz, I. Liaqat, S. Ali, M.F. Khan, F. Ahmed, and N.M. Ali. 2022. Molecular characterization of plant growth-promoting vermi-bacteria associated with Eisenia fetida gastrointestinal tract. PloS One 17(6), e0269946. Doi: https://doi.org/10.1371/journal.pone.0269946
  10. Aria, M. and C. Cuccurullo. 2017. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 11(4), 959-975. Doi: https://doi.org/10.1016/j.joi.2017.08.007
  11. Bar-Ilan, J. 2010. Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar. Scientometrics 82(3), 495-506. Doi: https://doi.org/10.1007/s11192-010-0185-9
  12. Barrera, N.A., S. Robledo, and M.Z. Sepulveda. 2022. Una revisión bibliográfica del Fintech y sus principales subáreas de estudio. Econ. CUC 43(1), 83-100. Doi: https://doi.org/10.17981/econcuc.43.1.2022.Econ.4
  13. Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Proc. Int. AAAI Conf. Web Soc. Media 3(1), 361-362. Doi: https://doi.org/10.1609/icwsm.v3i1.13937
  14. Bécquer, C.J. 2022. Rhizobacteria and their contribution to plant tolerance to drought and salinity. Cuban J. Agric. Sci. 56(2), 1-19. https://www.redalyc.org/articulo.oa?id=653773103006
  15. Bennis, M., V. Perez-Tapia, S. Alami, O. Bouhnik, H. Lamin, H. Abdelmoumen, E.J. Bedmar, and M.M. El Idrissi. 2022. Characterization of plant growth-promoting bacteria isolated from the rhizosphere of Robinia pseudoacacia growing in metal-contaminated mine tailings in eastern Morocco. J. Environ. Manag. 304, 114321. Doi: https://doi.org/10.1016/j.jenvman.2021.114321
  16. Bhutani, N., R. Maheshwari, N. Sharma, P. Kumar, A.S. Dang, and P. Suneja. 2022. Characterization of halo-tolerant plant growth promoting endophytic Bacillus licheniformis MHN 12. J. Genet. Eng. Biotechnol. 20(1), 113. Doi: https://doi.org/10.1186/s43141-022-00407-3
  17. Blondel, V.D., J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. J. Stat. Mechan.: Theory Exp. 2008(10), P10008. Doi: https://doi.org/10.1088/1742-5468/2008/10/P10008
  18. Buitrago, S., P.L. Duque, and S. Robledo. 2020. Branding corporativo: una revisión bibliográ­fica. Econ. CUC 41(1), 143-162. Doi: https://doi.org/10.17981/econcuc.41.1.2020.Org.1
  19. Cascón-Katchadourian, J., J.A. Moral-Munoz, H. Liao, and M.J. Cobo. 2020. Análisis biblio­métrico de la Revista Española de Documentación Científica desde su inclusión en la Web of Science (2008-2018). Rev. Esp. Doc. Cient. 43(3), e267. Doi: https://doi.org/10.3989/redc.2020.3.1690
  20. Cavael, U., P. Tost, K. Diehl, F. Büks, and P. Lentzsch. 2020. Correlations of soil fungi, soil structure and tree vigour on an apple orchard with replant soil. Soil Syst. 4(4), 70. Doi: https://doi.org/10.3390/soilsystems4040070
  21. Chakdar, H., S.G. Dastager, J.M. Khire, D. Rane, and M.S. Dharne. 2018. Characterization of mineral phosphate solubilizing and plant growth promoting bacteria from termite soil of arid re­gion. 3 Biotech 8(11), 463. Doi: https://doi.org/10.1007/s13205-018-1488-4
  22. Clavijo-Tapia, F.J., P.L. Duque-Hurtado, G. Arias-Cerquera, and M.A. Tolosa-Castañeda. 2021. Organizational communication: a bibliometric analysis from 2005 to 2020. Clio Amer. 15(29), 621-640. Doi: https://doi.org/10.21676/23897848.4311
  23. Cruz, C.I., L.X. Zelaya, G. Sandoval, S. de los Santos, E. Rojas, I.F. Chávez, and S. Ruiz. 2021. Utilización de microorganismos para una agricultura sostenible en México: consideracio­nes y retos. Rev. Mex. Cienc. Agric. 12(5), 899-913. Doi: https://doi.org/10.29312/remexca.v12i5.2905
  24. Di Vaio, A., R. Palladino, A. Pezzi, and D.E. Kalisz. 2021. The role of digital innovation in knowledge management systems: a systematic literature review. J. Bus. Res. 123, 220-231. Doi: https://doi.org/10.1016/j.jbusres.2020.09.042
  25. Diaz, C.E., D. Daza, and C.I. Arámbula. 2019. Biofertilizing potential of a fertilizer based on cienego and native microorganisms in corn seeds. J. Phys.: Conf. Ser. 1386(1), 012058. Doi: https://doi.org/10.1088/1742-6596/1386/1/012058
  26. Díaz-Rodríguez, A.M., L.A. Salcedo, C.M. Félix, F.I. Parra-Cota, G. Santoyo, M.L. Puente, D. Bhattacharya, J. Mukherjee, and S. de los Santos-Villalobos. 2021. The current and future role of microbial culture collections in food security worldwide. Front. Sustain. Food Syst. 4, 614739. Doi: https://doi.org/10.3389/fsufs.2020.614739
  27. Djebaili, R., M. Pellegrini, M. Rossi, C. Forni, M. Smati, M. Del Gallo, and M. Kitouni. 2021. Characterization of plant growth-promoting traits and inoculation effects on Triticum durum of actinomycetes isolates under salt stress conditions. Soil Syst. 5(2), 26. Doi: https://doi.org/10.3390/soilsystems5020026
  28. dos Santos, S.R.L., R.M. Costa, R.O. Aviz, V.M.M. Melo, A.C.A. Lopes, A.P.A. Pereira, L.W. Mendes, R.S. Barbosa, and A.S.F. Araujo. 2022. Differential plant growth-promoting rhizobacteria species selection by maize, cowpea, and lima bean. Rhizosphere 24, 100626. Doi: https://doi.org/10.1016/j.rhisph.2022.100626
  29. Duque-Hurtado, P., V. Samboni-Rodriguez, M. Castro-Garcia, L.A. Montoya-Restrepo, and I.A. Montoya-Restrepo. 2020. Neuromarketing: Its current status and research perspectives. Estud. Gerenc. 36(157), 525-539. Doi: https://doi.org/10.18046/j.estger.2020.157.3890
  30. Duque, P. and L.S.C. Cervantes-Cervantes. 2019. Responsabilidad social universitaria: una re­visión sistemática y análisis bibliométrico. Estud. Gerenc. 35(153), 451-464. Doi: https://doi.org/10.18046/j.estger.2019.153.3389
  31. Duque, P., O.E. Meza, D. Giraldo, and K. Barreto. 2021a. Economía social y economía soli­daria: un análisis bibliométrico y revisión de literatura. Revesco: Rev. Estud. Coop. 138, e75566. Doi: https://doi.org/10.5209/reve.75566
  32. Duque, P.L., O.E. Meza, G.A. Zapata, and J.D. Giraldo. 2021b. Internacionalización de em­presas latinas: evolución y tendencias. Econ. CUC 42(1), 122-152. Doi: https://doi.org/10.17981/econcuc.42.1.2021.Org.1
  33. Duque, P., D. Trejos, O. Hoyos, and J.C. Chica. 2021c. Finanzas corporativas y sostenibili­dad: un análisis bibliométrico e identificación de tendencias. Semest. Econ. 24(56), 25-51. Doi: https://doi.org/10.22395/seec.v24n56a1
  34. Echchakoui, S. 2020. Why and how to merge Scopus and Web of Science during bibliometric analysis: the case of sales force literature from 1912 to 2019. J. Mark. Anal. 8(3), 165-184. Doi: https://doi.org/10.1057/s41270-020-00081-9
  35. Fan, K., M. Delgado-Baquerizo, X. Guo, D. Wang, Y.-G. Zhu, and H. Chu. 2021. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J. 15(2), 550-561. Doi: https://doi.org/10.1038/s41396-020-00796-8
  36. Fan, M., Z. Liu, L. Nan, E. Wang, W. Chen, Y. Lin, and G. Wei. 2018. Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol. Res. 217, 51-59. Doi: https://doi.org/10.1016/j.micres.2018.09.002
  37. Fasusi, O.A., A.E. Amoo, and O.O. Babalola. 2021. Characterization of plant growth-promoting rhizobacterial isolates associated with food plants in South Africa. Anton. Leeuw. 114(10), 1683-1708. Doi: https://doi.org/10.1007/s10482-021-01633-4
  38. Freeman, L.C. 1977. A set of measures of centrality based on betweenness. Sociometry 40(1), 35-41. Doi: https://doi.org/10.2307/3033543
  39. Gao, J.-L., M.S. Khan, Y.-C. Sun, J. Xue, Y. Du, C. Yang, V.K. Chebotar, V.S. Tikunov, I.N. Rubanov, X. Chen, and X. Zhang. 2022. Characterization of an endophytic antagonistic bacterial strain LBG-1-13 with Multiple plant growth-promoting traits, stress tolerance, and its effects on lily growth. BioMed Res. Int. 2022, 5960004. Doi: https://doi.org/10.1155/2022/5960004
  40. Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41(2), 109-117. Doi: https://doi.org/10.1139/m95-015
  41. Glick, B.R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012, 963401. Doi: https://doi.org/10.6064/2012/963401
  42. Gohil, R.B., V.H. Raval, R.R. Panchal, and K.N. Rajput. 2022. Plant growth-promoting activity of Bacillus sp. PG-8 isolated from fermented panchagavya and its effect on the growth of Arachis hypogea. Front. Agron. 4, 805454. Doi: https://doi.org/10.3389/fagro.2022.805454
  43. Gordon, S.A. and R.P. Weber. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26(1), 192-195. Doi: https://doi.org/10.1104/pp.26.1.192
  44. Govindasamy, V., P. George, S.V. Ramesh, P. Sureshkumar, J. Rane, and P.S. Minhas. 2022. Characterization of root-endophytic actinobacteria from cactus (Opuntia ficus-indica) for plant growth promoting traits. Arch. Microbiol. 204(2), 150. Doi: https://doi.org/10.1007/s00203-021-02671-2
  45. Govindasamy, V., M. Senthilkumar, K. Gaikwad, and K. Annapurna. 2008. Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Curr. Microbiol. 57(4), 312-317. Doi: https://doi.org/10.1007/s00284-008-9195-8
  46. Goyal, D., S. Kumar, D. Meena, S.S. Solanki, S. Swaroop, and J. Pandey. 2022. Selection of ACC deaminase positive, thermohalotolerant and drought tolerance enhancing plant growth-promoting bacteria from rhizospheres of Cyamopsis tetragonoloba grown in arid regions. Lett. Appl. Microbiol. 74(4), 519-535. Doi: https://doi.org/10.1111/lam.13633
  47. Gu, Y., J. Wang, Z. Xia, and H.-L. Wei. 2020. Characterization of a versatile plant growth-promoting rhizobacterium Pseudomonas mediterranea strain S58. Microorganisms 8(3), 334. Doi: https://doi.org/10.3390/microorganisms8030334
  48. Gurzki, H. and D.M. Woisetschläger. 2017. Mapping the luxury research landscape: a bibliometric citation analysis. J. Bus. Res. 77, 147-166. Doi: https://doi.org/10.1016/j.jbusres.2016.11.009
  49. Gutiérrez-Calvo, A.E., A. Gutiérrez, C.L. Miceli-Méndez, and M.A. López-Miceli. 2022. Efectos de Bacillus subtilis cepas GBO3 y IN937b en el crecimiento de maíz (Zea mays L.). Poli­botanica (53), 211-218. Doi: https://doi.org/10.18387/polibotanica.53.14
  50. Helal, D.S., H. El-Khawas, and T.R. Elsayed. 2022. Molecular characterization of endophytic and ectophytic plant growth promoting bacteria isolated from tomato plants (Solanum lycopersicum L.) grown in different soil types. J. Genet. Eng. Biotechnol. 20(1), 79. Doi: https://doi.org/10.1186/s43141-022-00361-0
  51. Hyder, S., A.S. Gondal, Z.F. Rizvi, R. Ahmad, M.M. Alam, A. Hannan, W. Ahmed, N. Fatima, and M. Inam-Ul-Haq. 2020. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Sci. Rep. 10(1), 13859. Doi: https://doi.org/10.1038/s41598-020-69410-3
  52. Idaszkin, Y.L., R. Polifroni, and J. Mesa-Marín. 2021. Isolation of plant growth promoting rhizobacteria from Spartina densiflora and Sarcocornia perennis in San Antonio polluted salt marsh, Patagonian Argentina. Estuar. Coast. Shelf Sci. 260, 107488. Doi: https://doi.org/10.1016/j.ecss.2021.107488
  53. Issifu, M., E.K. Songoro, S. Niyomukiza, E.M. Ateka, J. Onguso, and V.W. Ngumi. 2022. Identification and in vitro characterization of plant growth-promoting Pseudomonas spp. isolated from the rhizosphere of tomato (Lycopersicum esculentum) plants in Kenya. Univ. J. Agric. Res. 10(6), 667-681. Doi: https://doi.org/10.13189/ujar.2022.100608
  54. Jana, G.A. and M.W. Yaish. 2020. Isolation and functional characterization of a mVOC producing plant-growth-promoting bacterium isolated from the date palm rhizosphere. Rhizosphere 16, 100267. Doi: https://doi.org/10.1016/j.rhisph.2020.100267
  55. Jatan, R., S. Tiwari, M.H. Asif, and C. Lata. 2019. Genome-wide profiling reveals extensive alterations in Pseudomonas putida-mediated miRNAs expression during drought stress in chickpea (Cicer arietinum L.). Environ. Exp. Bot. 157, 217-227. Doi: https://doi.org/10.1016/j.envexp­bot.2018.10.003
  56. Javoreková, S., R. Cinkocki, J. Maková, and N. Hricáková. 2021. Isolation and identification of rhizobacteria from maize (Zea mays L.) in luvisols and documentation their plant growth promoting traits. J. Microbiol. Biotechnol. Food Sci. 10(3), 505-510. Doi: https://doi.org/10.15414/jmbfs.2020.10.3.505-510
  57. Jhuma, T.A., J. Rafeya, S. Sultana, M.T. Rahman, and M.M. Karim. 2021. Isolation of endophytic salt-tolerant plant growth-promoting rhizobacteria from Oryza sativa and evaluation of their plant growth-promoting traits under salinity stress condition. Front. Sustain. Food Syst. 5, 687531. Doi: https://doi.org/10.3389/fsufs.2021.687531
  58. Ji, S.H., M.A. Gururani, and S.-C. Chun. 2014. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol. Res. 169(1), 83-98. Doi: https://doi.org/10.1016/j.micres.2013.06.003
  59. Khalifa, A.Y.Z., A.-M. Alsyeeh, M.A. Almalki, and F.A. Saleh. 2016. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi J. Biol. Sci. 23(1), 79-86. Doi: https://doi.org/10.1016/j.sjbs.2015.06.008
  60. Khezrinejad, N., G. Khodakaramian, and F. Shahryari. 2019. Characterization of potential plant growth-promoting rhizobacteria isolated from sunflower (Helianthus annuus L.) in Iran. Biol. Futura 70(4), 268-277. Doi: https://doi.org/10.1556/019.70.2019.30
  61. Kumar, P., R.C. Dubey, D.K. Maheshwari, Y.-H. Park, and V.K. Bajpai. 2016. Isolation of plant growth-promoting Pseudomonas sp. PPR8 from the rhizosphere of Phaseolus vulgaris L. Arch. Biol. Sci. 68(2), 363-374. Doi: https://doi.org/10.2298/ABS150701028K
  62. Kumari, P., M. Meena, and R.S. Upadhyay. 2018. Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatal. Agric. Biotechnol. 16, 155-162. Doi: https://doi.org/10.1016/j.bcab.2018.07.029
  63. Landinez, D.A., S. Robledo, and D.M. Montoya. 2019. Executive function performance in patients with obesity: A systematic review. Psychologia 13(2), 121-134. Doi: https://doi.org/10.21500/19002386.4230
  64. Lelapalli, S., S. Baskar, S.M. Jacob, and S. Paranthaman. 2021. Characterization of phosphate solubilizing plant growth promoting rhizobacterium Lysinibacillus pakistanensis strain PCPSMR15 isolated from Oryza sativa. Curr. Res. Microb. Sci. 2, 100080. Doi: https://doi.org/10.1016/j.crmicr.2021.100080
  65. Leontidou, K., S. Genitsaris, A. Papadopoulou, N. Kamou, I. Bosmali, T. Matsi, P. Madesis, D. Vokou, K. Karamanoli, and I. Mellidou. 2020. Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: genomic characterisation and exploration of phyto-beneficial traits. Sci. Rep. 10(1), 14857. Doi: https://doi.org/10.1038/s41598-020-71652-0
  66. Li, Y., X. You, Z. Tang, T. Zhu, B. Liu, M.-X. Chen, Y. Xu, and T.-Y. Liu. 2022. Isolation and identification of plant growth-promoting rhizobacteria from tall fescue rhizosphere and their functions under salt stress. Physiol. Plant. 174(6), e13817. Doi: https://doi.org/10.1111/ppl.13817
  67. Liu, Z., H. Wang, W. Xu, and Z. Wang. 2020. Isolation and evaluation of the plant growth promoting rhizobacterium Bacillus methylotrophicus (DD-1) for growth enhancement of rice seedling. Arch. Microb. 202(8), 2169-2179. Doi: https://doi.org/10.1007/s00203-020-01934-8
  68. Majeed, A., M.K. Abbasi, S. Hameed, A. Imran, and N. Rahim. 2015. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front. Microbiol. 6, 198. Doi: https://doi.org/10.3389/fmicb.2015.00198
  69. Malisorn, K., S. Chanchampa, P. Kanchanasin, and S. Tanasupawat. 2020. Identification and plant growth-promoting activities of proteobacteria isolated from root nodules and rhizospheric soils. Curr. Appl. Sci. Technol. 20(3), 479-493. https://li01.tci-thaijo.org/index.php/cast/article/view/244518
  70. Mghazli, N., O. Bruneel, R. Zouagui, R. Hakkou, and L. Sbabou. 2022. Characterization of plant growth promoting activities of indigenous bacteria of phosphate mine wastes, a first step toward revegetation. Front. Microbiol. 13, 1026991. Doi: https://doi.org/10.3389/fmicb.2022.1026991
  71. Munawar, A., M. Shaheen, S. Ramzan, S.A. Masih, F. Jabeen, T. Younis, and M. Aslam. 2023. Diversity and enzymatic potential of indigenous bacteria from unexplored contaminated soils in Faisalabad. Heliyon 9(4), e15256. Doi: https://doi.org/10.1016/j.heliyon.2023.e15256
  72. Mushtaq, S., M. Shafiq, T. Ashraf, M.S. Haider, M. Ashfaq, and M. Ali. 2019. Characterization of plant growth promoting activities of bacterial endophytes and their antibacterial potential isolated from citrus. J. Anim. Plant Sci. 29(4), 978-991. http://www.thejaps.org.pk/docs/v-29-04/10.pdf
  73. Nautiyal, C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170(1), 265-270. Doi: https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  74. Ong, J.D.P., N.B. Lantican, W.T. Cruz, M.G.Q. Diaz, and E.S. Paterno. 2018. Characterization of plant growth-promoting diazotrophs from salt-affected areas in the Philippines. Philip. J. Crop Sci. 43(1), 56-68.
  75. Orozco-Mosqueda, M.C. and G. Santoyo. 2021. Plant-microbial endophytes interactions: Scrutinizing their beneficial mechanisms from genomic explorations. Curr. Plant Biol. 25, 100189. Doi: https://doi.org/10.1016/j.cpb.2020.100189
  76. Pandey, A., A. Tripathi, P. Srivastava, K.K. Choudhary, and A. Dikshit. 2019. Plant growth-promoting microorganisms in sustainable agriculture. pp. 1-19. In: Kumar, A., A.K. Singh, and K.K. Choudhary (eds.). Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. Elsevier. Doi: https://doi.org/10.1016/b978-0-12-817004-5.00001-4
  77. Panigrahi, S., S. Mohanty, and C.C. Rath. 2020. Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with indole acetic acid (IAA) production and plant growth promoting capabilities against selected crops. South Afr. J. Bot. 134, 17-26. Doi: https://doi.org/10.1016/j.sajb.2019.09.017
  78. Patten, C.L. and B.R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68(8), 3795-3801. Doi: https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  79. Penrose, D.M., and B.R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118(1), 10-15. Doi: https://doi.org/10.1034/j.1399-3054.2003.00086.x
  80. Pikovskaya, R. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17, 362-370. https://cir.nii.ac.jp/crid/1571417126003636736
  81. Posada, A.M., D.P. Mejía, D. Polanco-Echeverry, and J.A. Cardona. 2021. Rizobacterias promotoras de crecimiento vegetal (PGPR): una revisión sistemática 1990-2019. Rev. Inv. Agrar. Ambient. 12(2), 161-178. Doi: https://doi.org/10.22490/21456453.4040
  82. Pranckutė, R. 2021. Web of Science (WoS) and Scopus: the titans of bibliographic information in today’s academic world. Publications 9(1), 12. Doi: https://doi.org/10.3390/publications9010012
  83. Queiroz, M.M. and S.F. Wamba. 2021. A structured literature review on the interplay between emerging technologies and COVID-19 - insights and directions to operations fields. Ann. Oper. Res. Doi: https://doi.org/10.1007/s10479-021-04107-y
  84. Rabelo-Flórez, R.A. 2023. Bacterias y hongos utilizados en la biodegradación de hidrocarbu­ros: Una revisión de literatura y análisis bibliométrico. Rev. EIA 20(39), 3913. Doi: https://doi.org/10.24050/reia.v20i39.1622
  85. Ramos-Enríquez, V., P. Duque, and J.A. Vieira. 2021. Responsabilidad social corporativa y emprendimiento: evolución y tendencias de investigación. Desarro. Gerenc. 13(1), 1-34. Doi: https://doi.org/10.17081/dege.13.1.4210
  86. Robledo, S., G. Osorio, and C. López. 2014. Networking en pequeña empresa: una revisión bibliográfica utilizando la teoria de grafos. Rev. Vínculos 11(2), 6-16.
  87. Sachman-Ruíz, B., A. Wong-Villarreal, L. Aguilar-Marcelino, L.F. Lozano-Aguirre, S. Espi­nosa-Zaragoza, A.L. Reyes-Reyes, D. Sanzón-Gómez, A.I. Mireles-Arriaga, R. Romero-Tirado, M.K. Rocha-Martínez, J.D. Pérez-de la Rosa, R. Sánchez-Cruz, and J.A. Gómez-Gutiérrez. 2022. Nematicidal, acaricidal and plant growth-promoting activity of endophytic strains and identification of genes associated with these biological activities in the genomes. Plants 11(22), 3136. Doi: https://doi.org/10.3390/plants11223136
  88. Saengsanga, T. 2018. Isolation and characterization of indigenous plant growth-promoting rhizobacteria and their effects on growth at the early stage of Thai Jasmine rice (Oryza sativa L. kdml105). Arab. J. Sci. Eng. 43(7), 3359-3369. Doi: https://doi.org/10.1007/s13369-017-2999-8
  89. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406-425. Doi: https://doi.org/10.1093/oxfordjournals.molbev.a040454
  90. Saravanakumar, D. 2019. Gene-based approach for selection of plant-growth-promoting rhizobacteria for plant disease control. Trop. Agricul. 95(4). https://journals.sta.uwi.edu/ojs/index.php/ta/article/view/6631
  91. Scagliola, M., Y. Pii, T. Mimmo, S. Cesco, P. Ricciuti, and C. Crecchio. 2016. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiol. Biochem. 107, 187-196. Doi: https://doi.org/10.1016/j.plaphy.2016.06.002
  92. Schwyn, B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160(1), 47-56. Doi: https://doi.org/10.1016/0003-2697(87)90612-9
  93. Secinaro, S., F. Dal Mas, V. Brescia, and D. Calandra. 2022. Blockchain in the accounting, auditing and accountability fields: a bibliometric and coding analysis. Account. Audit. Account. J. 35(9), 168-203. Doi: https://doi.org/10.1108/aaaj-10-2020-4987
  94. Singh, T.B., V. Sahai, D. Goyal, M. Prasad, A. Yadav, P. Shrivastav, A. Ali, and P.K. Dantu. 2020. Identification, characterization and evaluation of multifaceted traits of plant growth promoting rhizobacteria from soil for sustainable approach to agriculture. Curr. Microb. 77(11), 3633-3642. Doi: https://doi.org/10.1007/s00284-020-02165-2
  95. Singha, B., P.B. Mazumder, and P. Pandey. 2017. Characterization of plant growth promoting rhizobia from root nodule of two legume species cultivated in Assam, India. Proc. Natl. Acad. Sci. 88(3), 1007-1016. Doi: https://doi.org/10.1007/s40011-016-0836-6
  96. South, K.A., N.P. Nordstedt, and M.L. Jones. 2021. Identification of plant growth promoting rhizobacteria that improve the performance of greenhouse-grown petunias under low fertility conditions. Plants 10(7), 1410. Doi: https://doi.org/10.3390/plants10071410
  97. Tabacchioni, S., S. Passato, P. Ambrosino, L. Huang, M. Caldara, C. Cantale, J. Hett, A. Del Fiore, A. Fiore, A. Schlüter, A. Sczyrba, E. Maestri, N. Marmiroli, D. Neuhoff, J. Nesme, S.J. Sørensen, G. Aprea, C. Nobili, O. Presenti, G. Giovannetti, C. Giovannetti, A. Pihlanto, A. Brunori, and A. Bevivino. 2021. Identification of beneficial microbial consortia and bioactive compounds with potential as plant biostimulants for a sustainable agriculture. Microorganisms 9(2), 426. Doi: https://doi.org/10.3390/microorganisms9020426
  98. Tang, Y.W. and J. Bonner. 1948. The enzymatic inactivation of indole acetic acid. II. The physiology of the enzyme. Am. J. Bot. 35(9), 570-578. https://doi.org/10.2307/2438053
  99. Tang, L., Y. Shi, Y. Zhang, D. Yang, and C. Guo. 2023. Effects of plant-growth-promoting rhizobacteria on soil bacterial community, soil physicochemical properties, and soil enzyme activities in the rhizosphere of alfalfa under field conditions. Diversity 15(4), 537. https://doi.org/10.3390/d15040537
  100. Tani, M., O. Papaluca, and P. Sasso. 2018. The system thinking perspective in the open-innovation research: a systematic review. J. Open Innov.: Technol. Mark. Complex. 4(3), 38. Doi: https://doi.org/10.3390/joitmc4030038
  101. Tanya, M. and M. Leiva-Mora. 2019. Microorganismos eficientes, propiedades funcionales y aplicaciones agrícolas. Ctro. Agr. 46(2), 93-103. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-57852019000200093
  102. Torres, G., S. Robledo, and S. Rojas. 2021. Orientación al mercado: importancia, evolución y enfoques emergentes usando análisis cienciométrico. Criterio Libre 19(35), 326-340. Doi: https://doi.org/10.18041/1900-0642/criteriolibre.2021v19n35.8371
  103. Trejos-Salazar, D.F., P.L. Duque-Hurtado, L.A. Montoya-Restrepo, and I.A. Montoya-Restrepo. 2021. Neuroeconomía: una revisión basada en técnicas de mapeo científico. Rev. Invest. Desarro. Innov. 11(2), 243-260. Doi: https://doi.org/10.19053/20278306.v11.n2.2021.12754
  104. Umapathi, M., C.N. Chandrasekhar, A. Senthil, T. Kalaiselvi, R. Santhi, and R. Ravikesavan. 2022. Isolation, characterization and plant growth-promoting effects of sorghum [Sorghum bicolor (L.) moench] root-associated rhizobacteria and their potential role in drought mitigation. Arch. Microbiol. 204(6), 354. Doi: https://doi.org/10.1007/s00203-022-02939-1
  105. Urgiles-Gómez, N., M.E. Avila-Salem, P. Loján, M. Encalada, L. Hurtado, S. Araujo, Y. Collahuazo, J. Guachanamá, N. Poma, K. Granda, A. Robles, C. Senés, and P. Cornejo. 2021. Plant growth-promoting microorganisms in coffee production: from isolation to field application. Agronomy 11(8), 1531. Doi: https://doi.org/10.3390/agronomy11081531
  106. Valencia-Hernández, D.-S., S. Robledo, R. Pinilla, N.D. Duque-Méndez, and G. Olivar-Tost. 2020. SAP algorithm for citation analysis: an improvement to tree of science. Ing. Invest. 40(1), 45-49. Doi: https://doi.org/10.15446/ing.investig.v40n1.77718
  107. Vega-Celedón, P., G. Bravo, A. Velásquez, F.P. Cid, M. Valenzuela, I. Ramírez, I.-N. Vasconez, I. Álvarez, M.A. Jorquera, and M. Seeger. 2021. Microbial diversity of psychrotolerant bacteria isolated from wild flora of Andes mountains and Patagonia of Chile towards the selection of plant growth-promoting bacterial consortia to alleviate cold stress in plants. Microorganisms 9(3), 538. Doi: https://doi.org/10.3390/microorganisms9030538
  108. Vera-Baceta, M.-A., M. Thelwall, and K. Kousha. 2019. Web of Science and Scopus language coverage. Scientometrics 121(3), 1803-1813. Doi: https://doi.org/10.1007/s11192-019-03264-z
  109. Vurukonda, S.S. 2020. Agricoltura simbiotica: aumentare le conoscenze sulle modalità di azione dei microrganismi benefici. PhD thesis. Università degli studi di Modena e Reggio Emilia. http://hdl.handle.net/11380/1201054
  110. Wallis, W.D. 2007. A beginner’s guide to graph theory. 2nd ed. Birkhauser, Boston, MA. Doi: https://doi.org/10.1007/978-0-8176-4580-9
  111. Weisburg, W.G., S.M. Barns, D.A. Pelletier, and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173(2), 697-703. Doi: https://doi.org/10.1128/jb.173.2.697-703.1991
  112. Wu, Z., Z. Kong, S. Lu, C. Huang, S. Huang, Y. He, and L. Wu. 2019. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils. J. Gen. Appl. Microbiol. 65(5), 254-264. Doi: https://doi.org/10.2323/jgam.2018.11.004
  113. Yaish, M.W., I. Antony, and B.R. Glick. 2015. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Anton. Leeuw. 107(6), 1519-1532. Doi: https://doi.org/10.1007/s10482-015-0445-z
  114. Yang, S., F.B. Keller, and L. Zheng. 2017. Social network analysis: methods and examples. SAGE Publications. Doi: https://doi.org/10.4135/9781071802847
  115. Zahid, M., M.K. Abbasi, S. Hameed. and N. Rahim. 2015. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea Mays L.). Front. Microbiol. 6, 207. Doi: https://doi.org/10.3389/fmicb.2015.00207
  116. Zhang, J. and Y. Luo. 2017. Degree centrality, betweenness centrality, and closeness centrality in social network. pp. 300-303. In: Proc. 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017). Atlantis Press. Doi: https://doi.org/10.2991/msam-17.2017.68
  117. Zhu, J. and W. Liu. 2020. A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics 123(1), 321-335. Doi: https://doi.org/10.1007/s11192-020-03387-8
  118. Zhu, Z., H. Zhang, J. Leng, H. Niu, X. Chen, D. Liu, Y. Chen, N. Gao, and H. Ying. 2020. Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions. Anton. Leeuw. 113(9), 1263-1278. Doi: https://doi.org/10.1007/s10482-020-01434-1
  119. Zuluaga, M.Y.A., K.M. Lima Milani, L.S. Azeredo Gonçalves, and A.L. Martinez de Oliveira. 2020. Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. PloS One 15(1), e0227422. Doi: https://doi.org/10.1371/journal.pone.0227422
  120. Zupic, I. and T. Čater. 2015. Bibliometric methods in management and organization. Organ. Res. Methods. 18(3), 429-452. Doi: https://doi.org/10.1177/1094428114562629
  121. Zuschke, N. 2020. An analysis of process-tracing research on consumer decision-making. J. Bus. Res. 111, 305-320. Doi: https://doi.org/10.1016/j.jbusres.2019.01.028

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.