Skip to main navigation menu Skip to main content Skip to site footer

In vitro compatibility of Trichoderma asperellum with isotianil and pesticides of chemical and organic origin

Optical microscopy at 40x magnification of a germinated conidia of Trichoderma asperellum.  Photo: C.A. Dodino-Gutiérrez

Abstract

Synthetic pesticides are used to reduce the adverse effect of pests on the crops, although their indiscriminate use causes environmental pollution and harmful effects on soil microorganisms. The use of Trichoderma sp. is established as an alternative for the control of plant diseases and reduction of negative effects of the employment of pesticides through its combination with chemical agents. This study evaluated the inhibition percentage in vitro and germination conidia of Trichoderma asperellum after exposure to isotianil and chemical and organic pesticides by means of the technique poisoned food and inoculation in water agar. The assay was carried out in a completely randomized experimental design, data were subjected to analysis of variance and means were compared using the LSD Fisher P<0.01 test. Cinnamomun verum extract (1,050 µL L-1) and the defense inducer isotianil (2,200 µL L-1) were found to be harmless to T. asperellum presenting a mycelial growth inhibition percentage (PI) of 0.33±0.73 and 1.92±1.09, respectively; chili bell pepper-garlic extract (400 µL L-1) and azoxystrobin (750 µL L-1) were slightly toxic with a PI of 37.5±11.6 and 45.9±1.56; while glyphosate (6,480 µL L-1), mancozeb (26,666 mg L-1), difenoconazole (1,562 µL L-1) and fenpropimorph (24,200 µL L-1) were toxic with a PI of 100%. The results on conidia germination showed that chili bell pepper and garlic extract, C. verum extract and isotianil allowed more than 83% of their germination, unlike glyphosate and azoxystrobin that only allowed the germination of 48.8 and 33.9% of the conidia. The chemical fungicides mancozeb, difenoconazole and fenpropimorph showed negative effects causing less than 2% of germination. These results suggest the development of future studies for the joint application of native strains of Trichoderma sp. with pesticides of chemical and organic origin with the objective of evaluating their compatibility and using them jointly in the integrated pest management of crops in the region.

Keywords

Antagonist, Biological control, Compatibility, Plaguicides

PDF

References

  1. Adnan, M., W. Islam, A. Shabbir, K.A. Khan, H.A. Ghramh, Z. Huang, H.Y.H. Chen, and G.-D. Lu. 2019. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb. Pathog. 129, 7-18. Doi: https://doi.org/10.1016/j.micpath.2019.01.042
  2. Agarwal, P.K. and D. Pandey. 2017. Impact of pesticide: an overview. Trends Biosci. 10(6), 1341-1344.
  3. Ahmad, M.F., F.A. Ahmad, A.A. Alsayegh, Md. Zeyaullah, A.M. AlShahrani, K. Muzammil, A.A. Saati, S. Wahab, E.Y. Elbendary, N. Kambal, M.H. Abdelrahman, and S. Hussain. 2024. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 10(7), e29128. Doi: https://doi.org/10.1016/j.heliyon.2024.e29128
  4. Ajith, C.R., S. Pankaja, S. Supriya, J. Mahadeva, U. Kumar, and M. Sunitha. 2024. Compatibility assessment of native non-rhizospheric Trichoderma isolates with various fungicides. J. Adv. Biol. Biotechnol. 27(9), 988-999. Doi: https://doi.org/10.9734/jabb/2024/v27i91369
  5. Andreolli, M., S. Lampis, L. Tosi, V. Marano, and G. Zapparoli. 2023. Fungicide sensitivity of grapevine bacteria with plant growth-promoting traits and antagonistic activity as non-target microorganisms. World J. Microbiol. Biotechnol. 39(5), 121. Doi: https://doi.org/10.1007/s11274-023-03569-5
  6. Arain, U., M.J. Dars, A.A. Ujjan, H.B. Bozdar, A.Q. Rajput, and S. Shahzad. 2022. Compatibility of myco-fungicide isolate (Trichoderma harzianum Rifai) with fungicides and their in-vitro synergism assessment. Pak. J. Phytopathol. 34(2), 147-155. Doi: https://doi.org/10.33866/phytopathol.034.02.0763
  7. Asad, S.A. 2022. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases - A review. Ecol. Complex. 49, 100978. Doi: https://doi.org/10.1016/j.ecocom.2021.100978
  8. Asis, A., S.A. Shahriar, L. Naher, S. Saallah, H.N.N. Fatihah, V. Kumar, and S. Siddiquee. 2021. Identification patterns of Trichoderma strains using morphological characteristics, phylogenetic analyses and lignocellulolytic activities. Mol. Biol. Rep. 48(4), 3285-3301. Doi: https://doi.org/10.1007/s11033-021-06321-0
  9. Aydoğdu, M. 2022. Biological control of groundnut stem rot using native isolates of Trichoderma harzianum and T. aggressivum f. aggressivum. J. Plant Pathol. 105(1), 269-281. Doi: https://doi.org/10.1007/s42161-022-01279-9
  10. Baby, A., S.S. Veena, and S. Karthikeyan. 2022. Study on compatibility of Trichoderma asperellum and fungicides for the development of environment friendly and cost-effective disease management strategies. J. Root Crops 48(1-2), 35-40.
  11. Bagwan, N.B. 2010. Evaluation of Trichoderma compatibility with fungicides, pesticides, organic cakes and botanicals for integrated management of soil borne disease of soybean [Glycine max (L.) Merril]. Int. J. Plant Prot. 3(2), 206-209.
  12. Bartlett, D.W., J.M. Clough, J.R. Godwin, A.A. Hall, M. Hamer, and B. Parr‐Dobrzanski. 2002. The strobilurin fungicides. Pest Manag. Sci. 58(7), 649-662. Doi: https://doi.org/10.1002/ps.520
  13. Bektas, Y. and T. Eulgem. 2015. Synthetic plant defense elicitors. Front. Plant Sci. 5, 804. https://doi.org/10.3389/fpls.2014.00804
  14. Bhale, U.N. and J.N. Rajkonda. 2015. Compatibility of chemical pesticides and aggravation of Trichoderma spp against pathogens. Biosci. Methods 6(3). Doi: https://doi.org/10.5376/bm.2015.06.0003
  15. Bharadwaz, P., B.C. Nath, R. Chetia, S. Saikia, P. Bora, and P.N. Bhattacharyya. 2023. In-vitro studies on the compatibility of Trichoderma viride with commonly used agrochemicals in the vegetable cropping system. Pest Manag. Hort. Ecosystem. 29(1), 136-143.
  16. Bjørnlund, L., F. Ekelund, S. Christensen, C.S. Jacobsen, P.H. Krogh, and K. Johnsen. 2000. Interactions between saprotrophic fungi, bacteria and protozoa on decomposing wheat roots in soil influenced by the fungicide fenpropimorph (Corbel®): a field study. Soil Biol. Biochem. 32(7), 967-975. Doi: https://doi.org/10.1016/s0038-0717(00)00005-5
  17. Blanco, N.H.M., C.G. De Mendonça, and F.A.S. Graichen. 2024. Compatibility of Trichoderma harzianum with commercial herbicides. Obs. Econ. Latinoam. 22(6), e3886. Doi: https://doi.org/10.55905/oelv22n6-011
  18. Brotman, Y., J.G. Kapuganti, and A. Viterbo. 2010. Trichoderma. Curr. Biol. 20(9), 390-391. Doi: https://doi.org/10.1016/j.cub.2010.02.042
  19. Bunbury-Blanchette, A.L. and A.K. Walker. 2019. Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biol. Control 130, 127-135. Doi: https://doi.org/10.1016/j.biocontrol.2018.11.007
  20. Calle-Cheje, Y.H., R. Aguilar-Anccota, R. Rafael-Rutte, and A. Morales-Pizarro. 2023. Formulación y conservación del hongo antagonista Trichoderma asperellum como polvo mojable y emulsionable. Idesia 41(4), 43-53. Doi: https://doi.org/10.4067/s0718-34292023000400043
  21. Carmona, M., F. Sautua, O. Pérez-Hérnandez, and E.M. Reis. 2020. Role of fungicide applications on the integrated management of wheat stripe rust. Front. Plant Sci. 11, 733. Doi: https://doi.org/10.3389/fpls.2020.00733
  22. Carver, C.E., D. Pitt, and D.J. Rhodes. 1996. Aetiology and biological control of Fusarium wilt of pinks (Dianthus caryophyllus) using Trichoderma aureoviride. Plant Pathol. 45(4), 618-630. Doi: https://doi.org/10.1046/j.1365-3059.1996.d01-162.x
  23. Celar, F.A. and K. Kos. 2021. Compatibility of the commercial biological control agents Trichoderma asperellum (ICC 012) and Trichoderma gamsii (ICC 080) with selected herbicides. J. Plant Dis. Prot. 129(1), 85-92. Doi: https://doi.org/10.1007/s41348-021-00547-7
  24. Cerda, R., J. Avelino, C. Gary, P. Tixier, E. Lechevallier, and C. Allinne. 2017. Primary and secondary yield losses caused by pests and diseases: Assessment and modeling in coffee. PLoS ONE 12(1), e0169133. Doi: https://doi.org/10.1371/journal.pone.0169133
  25. Chagas Junior, A.F., L.F.B. Chagas, B.S.O. Colonia, and A.L.L. Martins. 2022. Trichoderma asperellum (Samuels, Lieckf & Nirenberg) as a promoter of vegetative growth in soybeans. Rev. Cienc. Agríc. 39(E), 50-68. Doi: https://doi.org/10.22267/rcia.202239e.199
  26. Chien, Y.-C. and C.-H. Huang. 2020. Biocontrol of bacterial spot on tomato by foliar spray and growth medium application of Bacillus amyloliquefaciens and Trichoderma asperellum. Eur. J. Plant Pathol. 156(4), 995-1003. Doi: https://doi.org/10.1007/s10658-020-01947-5
  27. Coca, B.M. and E.R. Gakegne. 2020. In vitro study of the compatibility of three fungicides with biocontrol agents Trichoderma asperellum and Pseudomonas protegens. Int. J. Curr. Microbiol. Appl. Sci. 9(6), 3355-3366. Doi: https://doi.org/10.20546/ijcmas.2020.906.398
  28. Da Silva, L.C., A.F. De Faria, R.A. Guimarães, M.S. Afridi, F.H.V. De Medeiros, and F.C.L. De Medeiros. 2024. How can an in vitro incompatibility of Trichoderma-based products and herbicides impact the parasitism and control of white mold (Sclerotinia sclerotiorum (Lib.) De Bary)? Crop Health 2(1), 5. Doi: https://doi.org/10.1007/s44297-024-00024-1
  29. Da Silva, M.A.F., K.E. De Moura, K.E. De Moura, D. Salomão, and F.R.A. Patricio. 2018. Compatibility of Trichoderma isolates with pesticides used in lettuce crop. Summa Phytopathol. 44(2), 137-142. Doi: https://doi.org/10.1590/0100-5405/176873
  30. Davoren, M.J. and R.H. Schiestl. 2018. Glyphosate-based herbicides and cancer risk: a post-IARC decision review of potential mechanisms, policy and avenues of research. Carcinogenesis 39(10), 1207-1215. Doi: https://doi.org/10.1093/carcin/bgy105
  31. Dinkwar, G.T., V.K. Yadav, A. Kumar, S. Nema, and S. Mishra. 2023. Compatibility of fungicides with potent Trichoderma isolates. Int. J. Plant Soil Sci. 35(18), 1934-1948. Doi: https://doi.org/10.9734/ijpss/2023/v35i183475
  32. Dodino-Gutiérrez, C.A., J.M. Santiago-Galvis, R.A. Rabelo-Florez, and J.G. Cubillos-Hinojosa. 2023. Aplicación de técnicas moleculares en microbiología del suelo para la identificación de bacterias con potencial agrícola: una revisión y análisis bibliométrico. Rev. Colomb. Cienc. Hortic. 17(2), e16096. Doi: https://doi.org/10.17584/rcch.2023v17i2.16096
  33. Duke, S.O. 2018. The history and current status of glyphosate. Pest Manag. Sci. 74(5), 1027-1034. Doi: https://doi.org/10.1002/ps.4652
  34. Fang, L., X. Liao, B. Jia, L. Shi, L. Kang, L. Zhou, and W. Kong. 2020. Recent progress in immunosensors for pesticides. Biosens. Bioelectron. 164, 112255. Doi: https://doi.org/10.1016/j.bios.2020.112255
  35. Fishel, F.M. and M.M. Dewdney. 2012. Fungicide Resistance Action Committee’s (FRAC) classification scheme of fungicides according to mode of action. Electronic Data Information Source of UF/IFAS Extension 2012(11), PI94. https://doi.org/10.32473/edis-pi131-2012
  36. FRAC, Fungicide Resistance Action Committee. 2019. Clasificación de fungicidas y bactericidas según el modo de acción. Basel, Switzerland.
  37. FRAC, Fungicide Resistance Action Committee. 2024. FRAC Code List©* 2024: Fungal control agents sorted by cross-resistance pattern and mode of action (including coding for FRAC Groups on product labels). In: https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2024.pdf?sfvrsn=52e14e9a_2; consulted: November, 2024.
  38. Fraceto, L.F., C.R. Maruyama, M. Guilger, S. Mishra, C. Keswani, H.B. Singh, and R. De Lima. 2018. Trichoderma harzianum‐based novel formulations: potential applications for management of Next‐Gen agricultural challenges. J. Chem. Technol. Biotechnol. 93(8), 2056-2063. Doi: https://doi.org/10.1002/jctb.5613
  39. Gezgin, Y., D.M. Gül, S.S. Şenşatar, C.U. Kara, S. Sargın, F.V. Sukan, and R. Eltem. 2020. Evaluation of Trichoderma atroviride and Trichoderma citrinoviride growth profiles and their potentials as biocontrol agent and biofertilizer. Turk. J. Biochem. 45(2), 163-175. Doi: https://doi.org/10.1515/tjb-2018-0378
  40. Gonzalez, M.F., F. Magdama, L. Galarza, D. Sosa, and C. Romero. 2020. Evaluation of the sensitivity and synergistic effect of Trichoderma reesei and mancozeb to inhibit under in vitro conditions the growth of Fusarium oxysporum. Commun. Integr. Biol. 13(1), 160-169. Doi: https://doi.org/10.1080/19420889.2020.1829267
  41. Haque, Z., N. Gupta, and R.N. Rajana. 2023. Compatibility of multifacial isolates of Trichoderma species with six common fungicides used against soil-borne fungal pathogens. J. Mycopathol. Res. 61(4), 545-552.
  42. Harman, G.E., C.R. Howell, A. Viterbo, I. Chet, and M. Lorito. 2004. Trichoderma species — opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2(1), 43-56. Doi: https://doi.org/10.1038/nrmicro797
  43. Jiang, H., L. Zhang, J.-Z. Zhang, M.R. Ojaghian, and K.D. Hyde. 2016. Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro. J. Zhejiang Univ. Sci. B 17(4), 271-281. Doi: https://doi.org/10.1631/jzus.B1500243
  44. Kaissoumi, H.E., F. Berber, N. Mouden, A.O. Chahdi, A. Albatnan, A.O. Touhami, K. Selmaoui, R. Benkirane, and A. Douira. 2023 Effect of Trichoderma asperellum on the development of strawberry plants and biocontrol of anthracnose disease caused by Colletotrichum gloeosporioides. pp. 609-622. In: Kacprzyk, J., M. Ezziyyani, and V.E. Balas (eds.). International Conference on Advanced Intelligent Systems for Sustainable Development. AI2SD 2022. Lecture Notes in Networks and Systems. Vol 713. Springer, Cham. Doi: https://doi.org/10.1007/978-3-031-35248-5_55
  45. Kanissery, R., B. Gairhe, D. Kadyampakeni, O. Batuman, and F. Alferez. 2019. Glyphosate: its environmental persistence and impact on crop health and nutrition. Plants 8(11), 499. Doi: https://doi.org/10.3390/plants8110499
  46. Kannan, V. and R. Sureendar. 2009. Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J. Basic Microbiol. 49(2), 158-164. Doi: https://doi.org/10.1002/jobm.200800011
  47. Kolombet, L.V., S.K. Zhigletsova, N.I. Kosareva, E.V. Bystrova, V.V. Derbyshev, S.P. Krasnova, and D. Schisler. 2007. Development of an extended shelf-life, liquid formulation of the biofungicide Trichoderma asperellum. World J. Microbiol. Biotechnol. 24(1), 123-131. Doi: https://doi.org/10.1007/s11274-007-9449-9
  48. Kredics, L., L. Hatvani, S. Naeimi, P. Körmöczi, L. Manczinger, C. Vágvölgyi, and I. Druzhinina. 2014. Biodiversity of the genus Hypocrea/Trichoderma in different habitats. pp. 3-24. In: Gupta, V.K., M. Schmoll, A. Herrera-Estrella, R.S. Upadhyay, I. Druzhinina, and M.G. Tuohy (eds.). Biotechnology and biology of Trichoderma. Elsevier, Amsterdam. Doi: https://doi.org/10.1016/b978-0-444-59576-8.00001-1
  49. Kumar, N.P., R. Kumar, K. Thakur, D. Mahajan, B. Brar, D. Sharma, S. Kumar, and A.K. Sharma. 2023. Impact of pesticides application on aquatic ecosystem and biodiversity: A review. Biol. Bull. 50(6), 1362-1375. Doi: https://doi.org/10.1134/S1062359023601386
  50. Kumar, T.V., S. Veena, S. Karthikeyan, and J. Sreekumar. 2017. Compatibility of Trichoderma asperellum with fungicides, insecticides, inorganic fertilizers and bio-pesticides. J. Root Crops 43(2), 68-75.
  51. Li, Y., R. Sun, J. Yu, K. Saravanakumar, and J. Chen. 2016. Antagonistic and biocontrol potential of Trichoderma asperellum ZJSX5003 against the maize stalk rot pathogen Fusarium graminearum. Indian J. Microbiol. 56(3), 318-327. Doi: https://doi.org/10.1007/s12088-016-0581-9
  52. Liu, L., X. Zheng, X. Wei, Z. Kai, and Y. Xu. 2021. Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication. Sci. Rep. 11(1), 23015. Doi: https://doi.org/10.1038/s41598-021-02521-7
  53. Lopes, R.B., I. Martins, D.A. Souza, and M. Faria. 2013. Influence of some parameters on the germination assessment of mycopesticides. J. Invertebr. Pathol. 112(3), 236-242. Doi: https://doi.org/10.1016/j.jip.2012.12.010
  54. Lu, T., Q. Zhang, M. Lavoie, Y. Zhu, Y. Ye, J. Yang, H.W. Paerl, H. Qian, and Y.-G. Zhu. 2019. The fungicide azoxystrobin promotes freshwater cyanobacterial dominance through altering competition. Microbiome 7(1), 128. Doi: https://doi.org/10.1186/s40168-019-0744-0
  55. Lyubenova, A., М. Rusanova, M. Nikolova, and S.B. Slavov. 2023. Plant extracts and Trichoderma spp: possibilities for implementation in agriculture as biopesticides. Biotechnol. Biotechnol. Equip. 37(1), 159-166. Doi: https://doi.org/10.1080/13102818.2023.2166869
  56. Madrid-Molina, M., S. Pérez-Álvarez, C.M. Escobedo-Bonilla, and C. Urías-García. 2023. Application of Trichoderma asperellum in apple trees as a growth regulator and antagonist for the control of Alternaria sp. Not. Bot. Horti Agrobo. 51(1), 13108. Doi: https://doi.org/10.15835/nbha51113108
  57. Maheshwari, M. 2014. Compatibility study of isolates of Trichoderma spp. with plant extracts. Asian J. Bio. Sci. 9(2), 242-245. Doi: https://doi.org/10.15740/has/ajbs/9.2/242-245
  58. Maheshwary, N.P., N.B. Gangadhara, A. Chittaragi, M.K. Naik, K.M. Satish, and M.S. Nandish. 2020. Compatibility of Trichoderma asperellum with fungicides. Pharm. Innov. J. 9(8), 136-140.
  59. Marcellin, M.L., M.E. François, V.A. Valteri, E.M.-J. Endali, and B.A.D. Begoude. 2018. In vitro study of the compatibility of six fungicides with two strains of Trichoderma asperellum, biocontrol agents used against cacao black pod disease in Cameroon. Int. J. Innov. Appl. Stud. 24(4), 1834-1848.
  60. Marinho, C.M., B.S. Diogo, O.M. Lage, and S.C. Antunes. 2020. Ecotoxicological evaluation of fungicides used in viticulture in non-target organisms. Environ. Sci. Pollut. Res. 27(35), 43958-43969. Doi: https://doi.org/10.1007/s11356-020-10245-w
  61. Martínez, F.D., M. Santos, F. Carretero, and F. Marín. 2016. Trichoderma saturnisporum, a new biological control agent. J. Sci. Food Agric. 96(6), 1934-1944. Doi: https://doi.org/10.1002/jsfa.7301
  62. McLaughlin, M.S., M. Roy, P.A. Abbasi, O. Carisse, S.N. Yurgel, and S. Ali. 2023. Why do we need alternative methods for fungal disease management in plants? Plants 12(22), 3822. https://doi.org/10.3390/plants12223822
  63. Meena, R., S. Kumar, R. Datta, R. Lal, V. Vijayakumar, M. Brtnicky, M. Sharma, G. Yadav, M. Jhariya, C. Jangir, S. Pathan, T. Dokulilova, V. Pecina, and T. Marfo. 2020. Impact of agrochemicals on soil microbiota and management: A review. Land 9(2), 34. Doi: https://doi.org/10.3390/land9020034
  64. Mendarte-Alquisira, C., A. Alarcón, and R. Ferrera-Cerrato. 2024. Growth, tolerance, and enzyme activities of Trichoderma strains in culture media added with a pyrethroids-based insecticide. Rev. Argent. Microbiol. 56(1), 79-89. Doi: https://doi.org/10.1016/j.ram.2023.06.004
  65. Mohammadi, A. and Y. Amini. 2015. The influence of pesticides and herbicides on the growth and spore germination of Trichoderma harzianum. Agric. Sci. Dev. 4(3), 41-44.
  66. Moharram, A.M., S.I.I. Abdel-Hafez, A.H.M. El-Said, and A. Salee. 2004. Effect of two systemic fungicides on cellulose decomposing fungi of tomato plants and on some enzymatic activities. Acta Microbiol. Immunol. Hung. 51(4), 403-430. Doi: https://doi.org/10.1556/AMicr.51.2004.4.2
  67. Nykiel-Szymańska, J., P. Bernat, and M. Słaba. 2020. Biotransformation and detoxification of chloroacetanilide herbicides by Trichoderma spp. with plant growth-promoting activities. Pestic. Biochem. Physiol. 163, 216-226. Doi: https://doi.org/10.1016/j.pestbp.2019.11.018
  68. Oliveira, D.G.P., G. Pauli, G.M. Mascarin, and I. Delalibera. 2015. A protocol for determination of conidial viability of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae from commercial products. J. Microbiol. Methods 119, 44-52. Doi: https://doi.org/10.1016/j.mimet.2015.09.021
  69. Oliver, R.P. and J.L. Beckerman. 2022. Fungicide mobility. pp. 119-126. In: Fungicides in practice. CABI, Wallingford, UK. Doi: https://doi.org/10.1079/9781789246926.0008
  70. Ons, L., D. Bylemans, K. Thevissen, and B.P.A. Cammue. 2020. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 8(12), 1930. Doi: https://doi.org/10.3390/microorganisms8121930
  71. Papavizas, G.C. 1985. Trichoderma and Gliocladium: Biology, ecology, and potential for biocontrol. Annu. Rev. Phytopathol. 23(1), 23-54. Doi: https://doi.org/10.1146/annurev.py.23.090185.000323
  72. Portz, K., F. Casanova, A. Jordine, S. Bohnert, A. Mehl, D. Portz, and U. Schaffrath. 2020. Wheat blast caused by Magnaporthe oryzae pathovar Triticum is efficiently controlled by the plant defence inducer isotianil. J. Plant Dis. Prot. 128(1), 249-259. Doi: https://doi.org/10.1007/s41348-020-00378-y
  73. Poudel, S., L.B. Pun, R. Paudel, S. Pokharel, and P. Khanal. 2024. Compatibility study of Trichoderma sp. with chemical fungicides commonly used by Nepalese farmers, under in-vitro condition. Int. J. Agric. Biol. 8(1), 51-61. Doi: https://doi.org/10.20956/ijab.v8i1.34792
  74. Poudel, S., L.B. Pun, R. Paudel, and S. Thapa. 2023. In-vitro compatibility assessment of Trichoderma harzianum with chemical fungicides and botanical extracts. J. Inst. Agric. Anim. Sci. 37(1), 121-131. Doi: https://doi.org/10.3126/jiaas.v37i1.56993
  75. Ramanagouda, G. and M.K. Naik. 2021. Compatibility studies of indigenous Trichoderma isolates with pesticides. Indian Phytopathol. 74(1), 241-248. Doi: https://doi.org/10.1007/s42360-021-00325-3
  76. Ramírez-Olier, J.P., H.D. Gómez-Berrio, J.A. Trujillo-Salazar, D.L. Delgado-Gómez, C.S. Rivera-Zuleta, and L.R. Botero. 2021. In vitro evaluation the toxicity in mixture of glyphosate and methyl metsulfuron against strains of Trichoderma spp. Dyna 88(218), 224-229. Doi: https://doi.org/10.15446/dyna.v88n218.92420
  77. Ramos-González, Y., A.D. Taibo, and C.P. D’Alessandro. 2022. Effect of synthetic pesticides on conidial germination and endophytic activity of Beauveria bassiana and Metarhizium anisopliae in common bean plants. Chil. J. Agric. Anim. Sci. 38(2), 199-206. Doi: https://doi.org/10.29393/chjaa38-19esyc30019
  78. Saha, S., S. Pharate, R. Thosar, and V. Chavan. 2023. Compatibility of Trichoderma asperelloides with fungicides controlling downy mildew and powdery mildew in grapes. Grape Insight 1(1), 32-36. Doi: https://doi.org/10.59904/gi.v1.i1.2023.9
  79. Sánchez-Montesinos, B., M. Santos, A. Moreno-Gavíra, T. Marín-Rodulfo, F.J. Gea, and F. Diánez. 2021. Biological control of fungal diseases by Trichoderma aggressivum f. europaeum and its compatibility with fungicides. J. Fungi 7(8), 598. Doi: https://doi.org/10.3390/jof7080598
  80. Sangiorgio, D., F. Spinelli, and E. Vandelle. 2022. The unseen effect of pesticides: The impact on phytobiota structure and functions. Front. Agron. 4, 936032. Doi: https://doi.org/10.3389/fagro.2022.936032
  81. Sarkar, S., P. Narayanan, A. Divakaran, A. Balamurugan, and R. Premkumar. 2010. The in vitro effect of certain fungicides, insecticides, and biopesticides on mycelial growth in the biocontrol fungus Trichoderma harzianum. Turk. J. Biol. 34(1), 399-403. Doi: https://doi.org/10.3906/biy-0812-4
  82. Schuhmann, A., A.P. Schmid, S. Manzer, J. Schulte, and R. Scheiner. 2022. Interaction of insecticides and fungicides in bees. Front. Insect Sci. 1, 808335. Doi: https://doi.org/10.3389/finsc.2021.808335
  83. Sharma, S., D. Kour, K.L. Rana, A. Dhiman, S. Thakur, P. Thakur, S. Thakur, N. Thakur, S. Sudheer, N. Yadav, A.N. Yadav, A.A. Rastegari, and K. Singh. 2019. Trichoderma: Biodiversity, ecological significances, and industrial applications. pp. 85-120. In: Yadav, A.N., S. Mishra, S. Singh, and A. Gupta (eds.). Recent advancement in white biotechnology through fungi. Vol. 1: Diversity and enzymes perspectives. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-030-10480-1_3
  84. Sharma, A., A. Shukla, K. Attri, M. Kumar, P. Kumar, A. Suttee, G. Singh, R.P. Barnwal, and N. Singla. 2020. Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicol. Environ. Saf. 201, 110812. Doi: https://doi.org/10.1016/j.ecoenv.2020.110812
  85. Sharma, S.D. and M. Singh. 2001. Environmental factors affecting absorption and bio-efficacy of glyphosate in Florida beggarweed (Desmodium tortuosum). Crop Prot. 20(6), 511-516. Doi: https://doi.org/10.1016/s0261-2194(01)00065-5
  86. Siddiquee, S. 2017. Morphology-based characterization of Trichoderma species. pp. 41-73. In: Fungal biology. Springer, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-319-64946-7_4
  87. Sinclair, J.B. and O.D. Dhingra. 2017. Basic plant pathology methods. 2nd ed. CRC Press, Boca Raton, FL. Doi: https://doi.org/10.1201/9781315138138
  88. Singh, M., R. Singh, P. Mishra, R. Sengar, and U. Shahi. 2021. In-vitro compatibility of Trichoderma harzianum with systemic fungicides. Int. J. Chem. Stud. 9(1), 2884-2888. Doi: https://doi.org/10.22271/chemi.2021.v9.i1an.11670
  89. Slaboch, J., L. Čechura, M. Malý, and J. Mach. 2022. The shadow values of soil hydrological properties in the production potential of climatic regionalization of the Czech Republic. Agriculture 12(12), 2068. Doi: https://doi.org/10.3390/agriculture12122068
  90. Sunkad, G., R. Joshi, and M. Patil. 2023. Compatibility of indigenous Trichoderma asperellum with chemical fungicides for the management of chickpea wilt. J. Biol. Control 37(1), 6-12. Doi: https://doi.org/10.18311/jbc/2023/32435
  91. Szpyrka, E., M. Podbielska, A. Zwolak, B. Piechowicz, G. Siebielec, and M. Słowik-Borowiec. 2020. Influence of a commercial biological fungicide containing Trichoderma harzianum Rifai T-22 on dissipation kinetics and degradation of five herbicides in two types of soil. Molecules 25(6), 1391. Doi: https://doi.org/10.3390/molecules25061391
  92. Tchameni, S.N., M.L. Sameza, A. O’donovan, R. Fokom, E.L.M. Ngonkeu, L.W. Nana, F.-X. Etoa, and D. Nwaga. 2017. Antagonism of Trichoderma asperellum against Phytophthora megakarya and its potential to promote cacao growth and induce biochemical defence. Mycology 8(2), 84-92. Doi: https://doi.org/10.1080/21501203.2017.1300199
  93. Terrero-Yépez, P.-I., S.L. Peñaherrera-Villafuerte, Z.K. Solís-Hidalgo, D.I. Vera-Coello, J.B. Navarrete-Cedeño, and M.A. Herrera-Defaz. 2018. Compatibilidad in vitro de Trichoderma spp. con fungicidas de uso común en cacao (Theobroma cacao L.). Investig. Agrar. 20(2), 146-151. Doi: https://doi.org/10.18004/investig.agrar.2018.diciembre.146-151
  94. Thomas, R.S.B.J. 2010. Compatibility of Trichoderma harzianum (Rifai.) with fungicides, insecticides and fertilizers. Indian Phytopathol. 63(2), 145-148.
  95. Thomas, J., R.S.J. Devi, S.K. Ahammed, V. Jayalakshmi, and V.L.N. Reddy. 2022. Efficacy of botanical extracts and organic amendments against Sclerotium rolfsii Sacc. incitant of collar rot of chickpea and its compatibility with potential Trichoderma isolate. Environ. Ecol. 40(4C), 2615-2623.
  96. Tirado-Gallego, P.A., A. Lopera-Álvarez, and L.A. Ríos-Osorio. 2016. Estrategias de control de Moniliophthora roreri y Moniliophthora perniciosa en Theobroma cacao L.: revisión sistemática. Cienc. Tecnol. Agropecu. 17(3), 417-430. Doi: https://doi.org/10.21930/rcta.vol17_num3_art:517
  97. Toquin, V., C. Sirven, L. Assmann, and H. Sawada. 2011. Host defense inducers. pp. 909-928. In: Krämer, W., U. Schirmer, P. Jeschke, and M. Witschel (eds). Modern crop protection compounds. 2nd ed. Vol. 1. Wiley-VCH Verlag GmbH, Weinheim, Germany. Doi: https://doi.org/10.1002/9783527644179.ch26
  98. Tsalidis, G.A. 2022. Human health and ecosystem quality benefits with life cycle assessment due to fungicides elimination in agriculture. Sustainability 14(2), 846. Doi: https://doi.org/10.3390/su14020846
  99. Tudi, M., H.D. Ruan, L. Wang, J. Lyu, R. Sadler, D. Connell, C. Chu, and D.T. Phung. 2021. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 18(3), 1112. Doi: https://doi.org/10.3390/ijerph18031112
  100. Van Bruggen, A.H.C., M.R. Finckh, M. He, C.J. Ritsema, P. Harkes, D. Knuth, and V. Geissen. 2021. Indirect effects of the herbicide glyphosate on plant, animal and human health through its effects on microbial communities. Front. Environ. Sci. 9, 763917. Doi: https://doi.org/10.3389/fenvs.2021.763917
  101. Vincent, J.M. 1947. Distortion of fungal hyphae in the presence of certain inhibitors. Nature 159(4051), 850. Doi: https://doi.org/10.1038/159850b0
  102. Vindas-Reyes, E., R. Chacón-Cerdas, and W. Rivera-Méndez. 2024. Trichoderma production and encapsulation methods for agricultural applications. AgriEngineering 6(3), 2366-2384. Doi: https://doi.org/10.3390/agriengineering6030138
  103. Vinuela, E. and J.A. Jacas. 1993. Los efectos de los plaguicidas sobre los organismos beneficiosos en agricultura, 3: Herbicidas. Phytoma Espana (51), 44-49.
  104. Wedajo, B. 2015. Compatibility studies of fungicides with combination of Trichoderma species under in vitro conditions. Virol. Mycol. 4(2), 149. Doi: https://doi.org/10.4172/2161-0517.1000149
  105. Wedge, D.E., B.J. Smith, J.P. Quebedeaux, and R.J. Constantin. 2007. Fungicide management strategies for control of strawberry fruit rot diseases in Louisiana and Mississippi. Crop Prot. 26(9), 1449-1458. Doi: https://doi.org/10.1016/j.cropro.2006.12.007
  106. Weisenburger, D.D. 1993. Human health effects of agrichemical use. Hum. Pathol. 24(6), 571-576. Doi: https://doi.org/10.1016/0046-8177(93)90234-8
  107. Woo, S.L., M. Ruocco, F. Vinale, M. Nigro, R. Marra, N. Lombardi, A. Pascale, S. Lanzuise, G. Manganiello, and M. Lorito. 2014. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 8(1), 71-126. Doi: https://doi.org/10.2174/1874437001408010071
  108. Yan, J., Y. Niu, C. Wu, Z. Shi, P. Zhao, N. Naik, X. Mai, and B. Yuan. 2021. Antifungal effect of seven essential oils on bamboo. Adv. Compos. Hybrid Mater. 4(3), 552-561. Doi: https://doi.org/10.1007/s42114-021-00251-y
  109. Yin, Y., J. Miao, W. Shao, X. Liu, Y. Zhao, and Z. Ma. 2023. Fungicide Resistance: Progress in understanding mechanism, monitoring, and management. Phytopathology 113(4): 707-718. Doi: https://doi.org/10.1094/PHYTO-10-22-0370-KD
  110. Zaine, D. 2011. The effect of some fungicides on Trichoderma spp. that use in biocontrol. Thesis. Tishreen University, Faculty of Agriculture. Syria. https://agris.fao.org/search/en/providers/122526/records/647369e2e17b74d22254f9f8
  111. Zapata-Narváez, Y.A. and B.L. Botina-Azain. 2023. Effect of adjuvants, fungicides and insecticides on the growth of Trichoderma koningiopsis Th003. Rev. Mex. Fitopatol. 41(3), 412-433. Doi: https://doi.org/10.18781/r.mex.fit.2305-1
  112. Zhang, C., W. Wang, M. Xue, Z. Liu, Q. Zhang, J. Hou, M. Xing, R. Wang, and T. Liu. 2021. The combination of a biocontrol agent Trichoderma asperellum SC012 and hymexazol reduces the effective fungicide dose to control Fusarium wilt in Cowpea. J. Fungi 7(9), 685. Doi: https://doi.org/10.3390/jof7090685
  113. Zhou, G.-D., P. He, L. Tian, S. Xu, B. Yang, L. Liu, Y. Wang, T. Bai, X. Li, S. Li, and S.-J. Zheng. 2023. Disentangling the resistant mechanism of Fusarium wilt TR4 interactions with different cultivars and its elicitor application. Front. Plant Sci. 14, 1145837. Doi: https://doi.org/10.3389/fpls.2023.1145837

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.