Skip to main navigation menu Skip to main content Skip to site footer

Protection of soybean by orange peel extract and its nanocapsules against ethyl methanesulfonate damages

Penta-foliate in soybean by EMS. Photo: K. Ramadan

Abstract

Citrus fruits are one of the most important sources of phenolic substances, known as antioxidants and protector agents against ethyl methanesulfonate (EMS). Orange peels were used to extract bioactive compounds such as phenols, in addition to evaluate antioxidant activity of the extracts. Soybean plant was used to study the effect of several concentrations (0.01, 0.1 and 1%) of orange peel water extract as protector material to which EMS (0.7%) was added, as well as nanoencapsulated extract at 0.1%. Several parameters were measured to evaluate the effect of these concentrations on soybean as germination rate, plant height, number of leaves, leaves characteristics, total number of flowers after 40 days from germination, number of pods per plant, number of seeds per plant, number of seeds per pod and weight of 100 seeds. The results showed that 1% of orange peel water extract had the highest protective effect, however no positive effect was detected when it was used without EMS. Using 0.01% of orange peels extract was indeed advantageous for plant growth. On the other hand, pectin-calcium nanoencapsulated extract at 0.1% showed better effectiveness when compared to non-encapsulated extract at the same concentration. These results revealed that using plant extracts could be a promising approach to protect plants from harmful substances existing in some mediums (tissue culture) and environments.

Keywords

Citrus, Soybean, Phenols, Mutation, Antimutagens, Nanoencapsulation

XML PDF

References

  1. Abbas, M.S., M. Afzaal, F. Saeed, A. Asghar, L. Jianfeng, A. Ahmad, Q. Ullah, S. Elahi, H. Ateeq, Y.A. Shah, M. Nouman, and M.A. Shah. 2023. Probiotic viability as affected by encapsulation materials: recent updates and perspectives. Int. J. Food. Prop. 26(1), 1324-1350. Doi: https://doi.org/10.1080/10942912.2023.2213408
  2. Abd Elghani, E.M., A.M. Elsayed, F.A. Omar, M.M. Abdel-Aziz Emam, S.H. Tadros, F.M. Soliman, and A.M. Al-Mahallawi. 2023. Comparative GC analysis of valencia orange ripe and unripe peel essential oils, nano-formulation, anti-Helicobacter Pylori and anti-inflammatory evaluation: in vitro and in silico. J. Essent. Oil-Bear. Plants 26(1), 190-205. Doi: https://doi.org/10.1080/0972060X.2023.2182706
  3. Abdel Wahab, A.S., A.M. Abou Elyazeed, and A.E. Abdalla. 2018. Bioactive compounds in some citrus peels as affected by drying processes and quality evaluation of cakes supplemented with citrus peels powder. J. Adv. Agric. Res. (Fac. Agric. Saba Basha). 23(1), 44-67.
  4. Adefegha, S.A., A. Salawi, A. Bumrungpert, S. Khorasani, S. Torkaman, M.R. Mozafari, and E. Taghavi. 2022. Encapsulation of polyphenolic compounds for health promotion and disease prevention: challenges and opportunities. Nano Micro Biosyst. 1(2), 1-12. Doi: https://doi.org/10.22034/nmbj.2023.163756
  5. Ademosun, A.O. 2022. Citrus peels odyssey: from the waste bin to the lab bench to the dining table. Appl. Food Res. 2(1), 100083. Doi: https://doi.org/10.1016/j.afres.2022.100083
  6. Ahmad, M.M., Salim-ur-Rehman, T.M. Qureshi, M. Nadeem, and M. Asghar. 2016. Variability in peel composition and quality evaluation of peel oils of Citrus varieties. J. Agric. Res. 54(4), 747-756. Doi: 10.13140/RG.2.2.25607.85922
  7. AlHafez, M., F. Kheder, and M. Aljoubbeh. 2014. Polyphenols, flavonoids and (-)-epigallocatechin gallate in tea leaves and in their infusions under various conditions. Nutr. Food. Sci. 44(5), 455-463. Doi: https://doi.org/10.1108/NFS-10-2013-0119
  8. Al-idee, T., H. Habbal, F. Karabet, and I. Alghoraibi. 2022. Comparison study between cherry and arabic gums in preparation and characterization of orange peel extract nanocapsules. J. Nanomater. 2022(1), 7721983. Doi: https://doi.org/10.1155/2022/7721983
  9. Arici, Ş.E. and A. Kara. 2021. Determination of the ethyl methanesulfonate-induced resistance in potato to Rhizoctonia solani. J. Agric Fac Gazi. Univ. 38(1), 28-37.
  10. Asdaq, S.M.B., S.I. Rabbani, M. Imran, A.A. Alanazi, G.Y. Alnusir, A.A. Al-Shammari, F.H. Alsubaie, and A.J. Alsalman. 2021. A review on potential antimutagenic plants of Saudi Arabia. Appl. Sci. 11(18), 8494. Doi: https://doi.org/10.3390/app11188494
  11. Azaat, A., G. Babojian, and N. Issa. 2022. Phytochemical screening, antioxidant and anticancer activities of Euphorbia hyssopifolia L. against MDA-MB-231 breast cancer cell line. J. Turk. Chem. Soc. Sec. A: Chem. 9(1), 295-310. Doi: https://doi.org/10.18596/jotcsa.1021449
  12. Boran, R. and A. Ugur. 2017. The mutagenic, antimutagenic and antioxidant properties of Hypericum lydium. Pharm. Biol. 55(1), 402-405. Doi: https://doi.org/10.1080/13880209.2016.1242146
  13. Brezo-Borjan, T., J. Švarc-Gajić, S. Morais, C. Delerue-Matos, F. Rodrigues, I. Lončarević, and B. Pajin. 2023. Chemical and biological characterisation of orange (Citrus sinensis) peel extracts obtained by subcritical water. Processes 11(6), 1766. Doi: https://doi.org/10.3390/pr11061766
  14. Calomme, M., L. Pieters, A. Vlietinck, and D.V. Berghe. 1996. Inhibition of bacterial mutagenesis by Citrus flavonoids. Planta Med. 62(3), 222-226. Doi: https://doi.org/10.1055/s-2006-957864
  15. Camacho, M.M., M. Zago, E. García-Martínez, and N. Martínez-Navarrete. 2022. Free and bound phenolic compounds present in orange juice by-product powder and their contribution to antioxidant activity. Antioxidants 11(9), 1748. Doi: https://doi.org/10.3390/antiox11091748
  16. Cassimjee, H., P. Kumar, Y.E. Choonara, and V. Pillay. 2020. Proteosaccharide combinations for tissue engineering applications. Carbohydr. Polym. 235, 115932. Doi: https://doi.org/10.1016/j.carbpol.2020.115932
  17. Cavalcante, F.M.L., I.V. Almeida, E. Dusman, M.S. Mantovani, and V.E.P. Vicentini. 2018. Cytotoxicity, mutagenicity, and antimutagenicity of the gentisic acid on HTC cells. Drug Chem. Toxicol. 41(2), 155-161. Doi: https://doi.org/10.1080/01480545.2017.1322606
  18. Chan, S.Y., W.S. Choo, D.J. Young, and X.J. Loh. 2017. Pectin as a rheology modifier: origin, structure, commercial production and rheology. Carbohydr. Polym. 161, 118-139. Doi: https://doi.org/10.1016/j.carbpol.2016.12.033
  19. Chen, L., L. Duan, M. Sun, Z. Yang, H. Li, K. Hu, H. Yang, and L. Liu. 2023. Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development. Front. Plant. Sci. 13, 1052569. Doi: https://doi.org/10.3389/fpls.2022.1052569
  20. Clevenger, J.F. 1928. Apparatus for the determination of volatile oil. J. Am. Pharm. Assoc. 17(4), 345-349. Doi: https://doi.org/10.1002/jps.3080170407
  21. Collins, A.R., A. Azqueta, and S.A.S. Langie. 2012. Effects of micronutrients on DNA repair. Eur. J. Nutr. 51(3), 261-279. Doi: https://doi.org/10.1007/s00394-012-0318-4
  22. Colpas, F.T., E.O. Ono, J.D. Rodrigues, and J.R.S. Passos. 2003. Effects of some phenolic compounds on soybean seed germination and on seed-borne fungi. Braz. Arch. Biol. Technol. 46(2), 155-161.
  23. Cooper, J.L., B.J. Till, R.G. Laport, M.C. Darlow, J.M. Kleffner, A. Jamai, T. El-Mellouki, S. Liu, R. Ritchie, N. Nielsen, K.D. Bilyeu, K. Meksem, L. Comai, and S. Henikoff. 2008. TILLING to detect induced mutations in soybean. BMC Plant. Biol. 8, 9. Doi: https://doi.org/10.1186/1471-2229-8-9
  24. Dahiya, D., A. Terpou, M. Dasenaki, and P.S. Nigam. 2023. Current status and future prospects of bioactive molecules delivered through sustainable encapsulation techniques for food fortification. Sustain. Food. Technol. 1(4), 500-510. Doi: https://doi.org/10.1039/D3FB00015J
  25. De Flora, S. 1988. Mechanisms of inhibitors of mutagenesis and carcinogenesis. Mutat. Res. 202(2), 285-306. Doi: https://doi.org/10.1016/0027-5107(88)90193-5
  26. De Flora, S., A. Izzotti, F. D’Agostini, R.M. Balansky, D. Noonan, and A. Albini. 2001. Multiple points of intervention in the prevention of cancer and other mutation-related diseases. Mutat. Res. 480-481, 9-22. Doi: https://doi.org/10.1016/S0027-5107(01)00165-8
  27. De Méo, M., M. Laget, M. Castegnaro, and G. Duménil. 1990. Evaluation of methods for destruction of some alkylating agents. Am. Ind. Hyg. Assoc. J. 51(9), 505-509. Doi: https://doi.org/10.1080/15298669091370004
  28. Deligiannakis, Y., G.A. Sotiriou, and S.E. Pratsinis. 2012. Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid. ACS Appl. Mater. Interfaces 4(12), 6609-6617. Doi: https://doi.org/10.1021/am301751s
  29. Díaz-Montes, E. 2023. Wall materials for encapsulating bioactive compounds via spray-drying: a review. Polymers 15(12), 2659. Doi: https://doi.org/10.3390/polym15122659
  30. Duta-Cornescu, G., N. Constantin, D.M. Pojoga, D. Nicuta, and A. Simon-Gruita. 2023. Somaclonal variation-advantage or disadvantage in micropropagation of the medicinal plants. Int. J. Mol. Sci. 24(1), 838. Doi: https://doi.org/10.3390/ijms24010838
  31. Elder, D., K.L. Facchine, J.N. Levy, R. Parsons, D. Ridge, L. Semo, and A. Teasdale. 2012. An approach to control strategies for sulfonate ester formation in pharmaceutical manufacturing based on recent scientific understanding. Org. Process. Res. Dev. 16(11), 1707-1710. Doi: https://doi.org/10.1021/op300216x
  32. Entezari, M. and S.J. Hosseini. 2014. Antimutagenicity effect of Citrus nobilis. Arch. Adv. Biosci. 5(1), 121-124. Doi: https://doi.org/10.22037/jps.v5i1.5403
  33. Entezari, M. and F. Ostadzadeh. 2014. Antimutagenesis effects of naringin. pp. 17-19. In: International Conference on Biological, Civil and Environmental Engineering (BCEE). Dubai (UAE).
  34. Erwin, J. 2007. Factors affecting flowering in ornamental plants. pp. 7-48. In: Anderson, N.O. (ed.). Flower breeding and genetics. Springer, Dordrecht. Doi: https://doi.org/10.1007/978-1-4020-4428-1_1
  35. Espina, M.J., C.M.S. Ahmed, A. Bernardini, E. Adeleke, Z. Yadegari, P. Arelli, V. Pantalone, and A. Taheri. 2018. Development and phenotypic screening of an ethyl methane sulfonate mutant population in soybean. Front. Plant Sci. 9, 394. Doi: https://doi.org/10.3389/fpls.2018.00394
  36. FAO. 2023. Introduction and advantages of protected cultivation systems. In: https://www.fao.org/3/cc7839en/cc7839en.pdf; consulted: April, 2023.
  37. Farahmandghavi, F., M. Imani, and F. Hajiesmaeelian. 2019. Silicone matrices loaded with levonorgestrel particles: impact of the particle size on drug release. J. Drug Deliv. Sci. Technol. 49, 132-142. Doi: https://doi.org/10.1016/j.jddst.2018.10.029
  38. Fernando, I.P.S., M. Kim, K.-T. Son, Y. Jeong, and Y.-J. Jeon. 2016. Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J. Med. Food. 19(7), 1-14. Doi: https://doi.org/10.1089/jmf.2016.3706
  39. Gautam, S., S. Saxena, and S. Kumar. 2016. Fruits and vegetables as dietary sources of antimutagens. J. Food Chem. Nanotechnol. 2(3), 97-114. Doi: https://doi.org/10.17756/jfcn.2016-018
  40. Geetha, B. and K.S. Santhy. 2013. Evaluation of antimutagenic activity of orange peel extract using ames salmonella microsome assay. Int. J. Lif. Sci. Biotechnol. Pharm. Res. 2(3), 466-471.
  41. Ghahfarokhi, M.G., M. Barzegar, M.A. Sahari, and M.H. Azizi. 2016. Enhancement of thermal stability and antioxidant activity of thyme essential oil by encapsulation in chitosan nanoparticles. J. Agric. Sci. Tech. 18, 1781-1792.
  42. Gopinath, P. and P. Pavadai. 2015. Morphology and yield parameters and biochemical analysis of soybean (Glycine max (L.) Mrr.) using gamma rays, EMS and DES treatment. Int. Lett. Nat. Sci. 35, 50-58. Doi: https://doi.org/10.56431/p-440u8u
  43. Gutierrez-Alvarado, K., R. Chacón-Cerdas, and R. Starbird-Perez. 2022. Pectin microspheres: synthesis methods, properties, and their multidisciplinary applications. Chemistry 4(1), 121-136. Doi: https://doi.org/10.3390/chemistry4010011
  44. Herdiana, Y., N. Wathoni, S. Shamsuddin, and M. Muchtaridi. 2022. Drug release study of the chitosan-based nanoparticles. Heliyon 8(1), e08674. Doi: https://doi.org/10.1016/j.heliyon.2021.e08674
  45. Hour, T.-C., Y.-C. Liang, I.-S. Chu, and J.-K. Lin. 1999. Inhibition of eleven mutagens by various tea extracts,(−)epigallocatechin-3 gallate, gallic acid and caffeine. Food. Chem. Toxicol. 37(6), 569-579. Doi: https://doi.org/10.1016/S0278-6915(99)00031-9
  46. Hu, S., Y. Ding, and C. Zhu. 2020. Sensitivity and responses of chloroplasts to heat stress in plants. Front. Plant Sci. 11, 375. Doi: https://doi.org/10.3389/fpls.2020.00375
  47. Huang, M.-H., H.-M. Tai, B.-S. Wang, and L.-W. Chang. 2013. Inhibitory effects of water extract of Flos inulae on mutation and tyrosinase. Food Chem. 139(1-4), 1015-1020. Doi: https://doi.org/10.1016/j.foodchem.2013.01.066
  48. Kada, T., T. Inoue, and N. Namiki. 1982. Environmental desmutagens and antimutagens. pp. 137-151. In: Klekowski, E.J. (ed.). Environmental mutagenesis and plant biology. Praeger, New York, NY. Doi: https://doi.org/10.1007/978-1-4615-9561-8_50
  49. Kamal, G.M., F. Anwar, A.I. Hussain, N. Sarri, and M.Y. Ashraf. 2011. Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. Int. Food Res. J. 18(4), 1275-1282.
  50. Khan, I., K. Saeed, and I. Khan. 2019. Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12(7), 908-931. Doi: https://doi.org/10.1016/j.arabjc.2017.05.011
  51. Koshika, N., N. Shioya, T. Fujimura, R. Oguchi, C. Ota, E. Kato, R. Takahashi, S. Kimura, S. Furuno, K. Saito, K. Okabe, M. Watanabe, and T. Hoshino. 2022. Development of ethyl methanesulfonate mutant edamame soybean (Glycine max (L.) Merr.) populations and forward and reverse genetic screening for early-flowering mutants. Plants 11(14), 1839. Doi: https://doi.org/10.3390/plants11141839
  52. Krogmeier, M.J. and J.M. Bremner. 1989. Effects of phenolic acids on seed germination and seedling growth in soil. Biol. Fert. Soils 8, 116-122. Doi: https://doi.org/10.1007/BF00257754
  53. Ladaniya, M. 2023. Fruit biochemistry. pp. 173-247. In: Citrus fruit: biology, technology and evaluation. 2nd ed. Elsevier Inc, Academic Press, Cambridge, MA. Doi: https://doi.org/10.1016/B978-0-323-99306-7.00021-9
  54. Lee, C.-M. 2023. A review on the antimutagenic and anticancer effects of cysteamine. Adv. Pharmacol. Pharm. Sci. 2023(1), 2419444. Doi: https://doi.org/10.1155/2023/2419444
  55. Li, B.B., B. Smith, and M.M. Hossain. 2006. Extraction of phenolics from citrus peels: II. Enzyme-assisted extraction method. Sep. Purif. Technol. 48(2), 182-188. Doi: https://doi.org/10.1016/j.seppur.2005.07.019
  56. Makhafola, T.J., E.E. Elgorashi, L.J. McGaw, L. Verschaeve, and J.N. Eloff. 2016. The correlation between antimutagenic activity and total phenolic content of extracts of 31 plant species with high antioxidant activity. BMC Complement. Altern. Med. 16(490), 1-13. Doi: https://doi.org/10.1186/s12906-016-1437-x
  57. Marnewick, J.L., W.C.A. Gelderblom, and E. Joubert. 2000. An investigation on the antimutagenic properties of South African herbal teas. Mutat. Res. - Genet. Toxicol. Environ. Mutag. 471(1-2), 157-166. Doi: https://doi.org/10.1016/s1383-5718(00)00128-5
  58. Matsumoto, T., M. Koike, C. Arai, T. Kitagawa, E. Inoue, D. Imahori, and T. Watanabe. 2018. Chemical structures and antimutagenic effects of unusual oximes from the peels of Citrus limon. Phytochem. Lett. 25, 118-121. Doi: https://doi.org/10.1016/j.phytol.2018.04.016
  59. Matsumoto, T., S. Nakamura, N. Kojima, T. Hasei, M. Yamashita, T. Watanabe, and H. Matsuda. 2017a. Antimutagenic activity of ent-kaurane diterpenoids from the aerial parts of Isodon japonicus. Tetrahed. Lett. 58(36), 3574-3578. Doi: https://doi.org/10.1016/j.tetlet.2017.07.106
  60. Matsumoto, T., T. Nishikawa, A. Furukawa, S. Itano, Y. Tamura, T. Hasei, and T. Watanabe. 2017b. Antimutagenic effects of polymethoxy flavonoids of Citrus unshiu. Nat. Prod. Commun. 12(1), 23-26. Doi: https://doi.org/10.1177/1934578X1701200108
  61. Matsumoto, T., K. Takahashi, S. Kanayama, Y. Nakano, H. Imai, M. Kibi, D. Imahori, T. Hasei, and T. Watanabe. 2017c. Structures of antimutagenic constituents in the peels of Citrus limon. J. Nat. Med. 71(4), 735-744. Doi: https://doi.org/10.1007/s11418-017-1108-3
  62. Mbaveng, A.T., Q. Zhao, and V. Kuete. 2014. Harmful and protective effects of phenolic compounds from African medicinal plants. Toxicol. Surv. Afr. Med. Plants 20, 577-609. Doi: https://doi.org/10.1016/B978-0-12-800018-2.00020-0
  63. Medhe, S., P. Bansal, and M.M. Srivastava. 2014. Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study. Appl. Nanosci. 4(2), 153-161. Doi: https://doi.org/10.1007/s13204-012-0182-9
  64. Mezerji, Z.K., R. Boshrouyeh, S.H. Razavi, S. Ghajari, H. Hajiha, N. Shafaei, E. Karimi, and E. Oskoueian. 2023. Encapsulation of Polygonum bistorta root phenolic compounds as a novel phytobiotic and its protective effects in the mouse model of enteropathogenic Escherichia coli infection. BMC Complement. Med. Ther. 23(1), 49. Doi: https://doi.org/10.1186/s12906-023-03868-2
  65. Mushtaq, M., B. Sultana, F. Anwar, and S. Batool. 2015. Antimutagenic and antioxidant potential of aqueous and acidified methanol extracts from Citrus limonum fruit residues. J. Chil. Chem. Soc. 60(2), 2979-2983. Doi: http://doi.org/10.4067/S0717-97072015000200025
  66. Nleya, T., P. Sexton, K. Gustafson, and J.M. Miller. 2019. Soybean growth stages. pp. 25-34. In: iGrow soybeans: best management practices for soybean production. South Dakota State University; USDA, Washington, DC.
  67. Novick, A. and L. Szilard. 1952. Anti-mutagens. Nature 170, 926-927. Doi: https://doi.org/10.1038/170926a0
  68. Olguín-Reyes, S., R. Camacho-Carranza, S. Hernández-Ojeda, M. Elinos-Baez, and J.J. Espinosa-Aguirre. 2012. Bergamottin is a competitive inhibitor of CYP1A1 and is antimutagenic in the Ames test. Food. Chem. Toxicol. 50(9), 3094-3099. Doi: https://doi.org/10.1016/j.fct.2012.05.058
  69. Park, J.-H., M. Lee, and E. Park. 2014. Antioxidant activity of orange flesh and peel extracted with various solvents. Prev. Nutr. Food. Sci. 19(4), 291-298. Doi: https://doi.org/10.3746/pnf.2014.19.4.291
  70. Patil, A., S.P. Taware, and V.M. Raut. 2004. Induced variation in quantitative traits due to physical (γ rays), chemical (EMS) and combined mutagen treatments in soybean [Glycine max (L.) Merrill]. Soybean. Genet. Newsl. 31, 1-6.
  71. Pavadai, P., M. Girija, and D. Dhanavel. 2010. Effect of gamma rays, EMS, DES and COH on protein and oil content in soybean. J. Ecobiotechnol. 2(4), 47-50.
  72. Phull, A., Q. Abbas, A. Ali, H. Raza, S.J. Kim, M. Zia, and I. Ul-Haq. 2016. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliate. Future. J. Pharm. Sci. 2(1), 31-36. Doi: https://doi.org/10.1016/j.fjps.2016.03.001
  73. Pucci, C., C. Martinelli, A. Degl'Innocenti, A. Desii, D. De Pasquale, and G. Ciofani. 2021. Light-activated biomedical applications of chlorophyll derivatives. Macromol Biosci. 21(9), 2100181. Doi: https://doi.org/10.1002/mabi.202100181
  74. Rajabi, H., S.M. Jafari, G. Rajabzadeh, M. Sarfarazi, and S. Sedaghati. 2019. Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Coll. Surf. A. Physicochem. Eng. Asp. 578, 123644. Doi: https://doi.org/10.1016/j.colsurfa.2019.123644
  75. Ramadan, K., S. Nader, and A. Ibrahim. 2018. Evaluation of sequential extraction of some biological materials from orange fruits peel (Citrus sinensis). Bulg. J. Agric. Sci. 24(6), 1129-1136.
  76. Rashid, U., M. Ibrahim, S. Yasin, R. Yunus, Y.H. Taufiq-Yap, and G. Knothe. 2013. Biodiesel from Citrus reticulate (mandarin orange) seed oil, a potential non-food feedstock. Ind. Crops. Prod. 45, 355-359. Doi: https://doi.org/10.1016/j.indcrop.2012.12.039
  77. Saeed, M., M. Azam, H.S. Kiani, M. Hussain, H. Ahsan, T. Ahmad, H.K. Waseem, M. Bilal, A. Fatima, and A. Ali. 2023. Assessing the potential of milk-based encapsulation matrix for improved bio-accessibility of probiotics. Fermentation 9(8), 725. Doi: https://doi.org/10.3390/fermentation9080725
  78. Safdar, M.N., T. Kausar, S. Jabbar, A. Mumtaz, K. Ahad, and A.A. Saddozai. 2017. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. J. Food Drug. Anal. 25(3), 488-500. Doi: https://doi.org/10.1016/j.jfda.2016.07.010
  79. Sağel, Z., M.I. Tutluer, H. Peskı̇rcı̇oğlu, Y. Kantoğlu, and B. Kunter. 2017. Determination of effect of chemical mutagen EMS on TAEK A-3 and TAEK C-10 mutant soybean varieties in M1 generation. J. Am. Soc. Inf. Sci. Technol. 3(1), 19-24.
  80. Saïed, N., M. Khelifi, A. Bertrand, M. Aider, and G.F. Tremblay. 2020. Optimization of water-soluble carbohydrate extraction from sweet sorghum and sweet pearl millet biomass. Bioenerg. Res. 13, 237-248. Doi: https://doi.org/10.1007/s12155-020-10107-w
  81. Saleem, M., A.I. Durani, A. Asari, M. Ahmed, M. Ahmad, N. Yousaf, and M. Muddassar. 2023. Investigation of antioxidant and antibacterial effects of citrus fruits peels extracts using different extracting agents: phytochemical analysis with in silico studies. Heliyon 9(4), e15433. Doi: https://doi.org/10.1016/j.heliyon.2023.e15433
  82. Shamshad, A., M. Rashid, L. Jankuloski, K. Ashraf, K. Sultan, S. Alamri, M.H. Siddiqui, T. Munir, and Q. Zaman. 2023. Effect of ethyl methanesulfonate mediated mutation for enhancing morpho-physio-biochemical and yield contributing traits of fragrant rice. PeerJ. 11, e15821. Doi: https://doi.org/10.7717/peerj.15821
  83. Shen, C.-H. 2019. Nucleic acid-based cellular activities. pp. 27-57. In: Diagnostic molecular biology. Elsevier; Academic Press, London. Doi: https://doi.org/10.1016/B978-0-12-802823-0.00002-X
  84. Shimizu, K., H. Nakamura, and S. Watano. 2016. MD simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field. Nanoscale 8(23), 11897-11906. Doi: https://doi.org/10.1039/C6NR02051H
  85. Singh, J., K. Kaur, and P. Kumar. 2018. Optimizing microencapsulation of α-tocopherol with pectin and sodium alginate. J. Food Sci. Technol. 55(9), 3625-3631. Doi: https://doi.org/10.1007/s13197-018-3288-6
  86. Sir-Elkhatim, K.A., R.A.A. Elagib, and A.B. Hassan. 2018. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci. Nutr. 6(5), 1214-1219. Doi: https://doi.org/10.1002/fsn3.660
  87. Słoczyńska, K., B. Powroźnik, E. Pękala, and A.M. Waszkielewicz. 2014. Antimutagenic compounds and their possible mechanisms of action. J. Appl. Genet. 55(2), 273-285. Doi: https://doi.org/10.1007/s13353-014-0198-9
  88. Sun, Y., M. Zhong, Y. Liao, M. Kang, B. Qi, and Y. Li. 2023. Pickering emulsions stabilized by reassembled oleosome protein nanoparticles for co-encapsulating hydrophobic nutrients. Food Hydrocoll. 138, 108445. Doi: https://doi.org/10.1016/j.foodhyd.2022.108445
  89. Toscano-Garibay, J.D., M. Arriaga-Alba, J. Sánchez-Navarrete, M. Mendoza-García, J.J. Flores-Estrada, M.A. Moreno-Eutimio, J.J. Espinosa-Aguirre, M. González-Ávila, and N.J. Ruiz-Pérez. 2017. Antimutagenic and antioxidant activity of the essential oils of Citrus sinensis and Citrus latifolia. Sci. Rep. 7, 11479. Doi: https://doi.org/10.1038/s41598-017-11818-5
  90. Traversier, M., T. Gaslonde, L. Lecso, S. Michel, and E. Delannay. 2020. Comparison of extraction methods for chemical composition, antibacterial, depigmenting and antioxidant activity of Eryngium maritimum. Int. J. Cosmet. Sci. 42(2), 127-135. Doi: https://doi.org/10.1111/ics.12595
  91. UNCTAD, United Nations Conference on Trade and Development. 2004. Market information in the commodities area: information on citrus fruit. In: https://unctad.org/system/files/official-document/ditccom20041ch3_en.pdf; consulted: April, 2023.
  92. USDA, United States Department of Agriculture USA. 2023. Citrus: world markets and trade. In: https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf; consulted: April, 2023.
  93. Valdez-Morales, M., L.G. Espinosa-Alonso, L.C. Espinoza-Torres, F. Delgado-Vargas, and S. Medina-Godoy. 2014. Phenolic content, and antioxidant and antimutagenic activities in tomato peel and seeds, and tomato by-products. J. Agric. Food. Chem. 62(23), 5281-5289. Doi: https://doi.org/10.1021/jf5012374
  94. Yuan, J., N. Bellaloui, N. Lakhssasi, S.M. AbuBakr, S. Kassem, Z. Kassem, S. Kassem, C. Barnes, A. McLelland, B. Brown, W. Adams, T. El-Mellouki, K. Meksem, and M.A. Kassem. 2020. Evaluation of yield performance of soybean mutant FM6-847 in North Carolina. Atlas J. Plant Biol. 2020, 96-105. Doi: https://doi.org/10.5147/ajpb.v0i0.215
  95. Zhang, Z., J. Yang, Q. Zhang, and X. Cao. 1991. Studies on the utilization of a plant SCE test in detecting potential mutagenic agents. Mut. Res. 261(1), 69-73. Doi: https://doi.org/10.1016/0165-1218(91)90099-8
  96. Zhou, Z., N. Lakhssassi, M.A. Cullen, A. El Baz, T.D. Vuong, H.T. Nguyen, and K. Meksem. 2019. Assessment of phenotypic variations and correlation among seed composition traits in mutagenized soybean populations. Genes 10(12), 975. Doi: https://doi.org/10.3390/genes10120975

Downloads

Download data is not yet available.