Effect of partial replacement of wheat flour with three green leaves′ flours in the nutritional and antioxidant properties of sliced bread

Abstract
The leaves of certain cultivated plants can exhibit a high phenolic compound content, demonstrating significant antioxidant activity. Phenols, organic compounds found in many plants, possess antioxidant properties that can protect body cells from oxidative damage caused by free radicals. In this study, four different types of bread were prepared: standard bread, spinach bread, parsley bread, and tarragon bread, using a 3% partial substitution (PS) of wheat flour with flours derived from different types of leaves. The physicochemical, antioxidant, and sensory properties of the bread with this 3% leaf flour addition were evaluated. The results revealed that the inclusion of 3% leaf flour increased protein, fiber, and ash content while reducing fat content. Additionally, a decrease in crumb lightness and a shift in the a* color coordinate were observed. The total phenolic content (TPC) and antioxidant activity (AA) also increased with the addition of these natural ingredients, rising from 51.1 to 101.38 mg GAE/100g and from 15.48 to 50.48 mg AAE/100g, respectively. In terms of sensory evaluation, the bread with 3% spinach flour was the most accepted after the standard bread. In summary, the inclusion of 3% leaf flour in the bread influenced its properties, with tarragon being the most notable for increasing fiber, ash content, antioxidant activity, and total phenolic content.
Keywords
Antioxidants, Parsley, Polyphenols, Spinach, Tarragon
References
- AOAC, Association Official Analytical Chemists. 2010. Official methods of analysis of AOAC international. 18th ed. Gaithersburg, MD.
- Arrascue, B. and L. Troncoso. 2023. The gastric regenerative effect of consumption of Petroselinum sativum L. (parsley) in rats with gastritis induced by ethanol. Rev. Gastroenterol. Peru 43(2), 127-133. Doi: http://doi.org/10.47892/rgp.2023.432.1497
- Brand-Williams, W., M.E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol. 28(1), 25-30. Doi: https://doi.org/10.1016/S0023-6438(95)80008-5
- Das, L., U. Raychaudhuri, and R. Chakraborty. 2012. Supplementation of common white bread by coriander leaf powder. Food Sci. Biotechnol. 21(2), 425-433. Doi: https://doi.org/10.1007/s10068-012-0054-9
- Dimov, I., N. Petkova, G. Nakov, I. Taneva, I. Ivanov, and V. Stamatovska. 2018. Improvement of antioxidant potential of wheat flours and breads by addition of medicinal plants. Ukr. Food J. 7, 671-681. Doi: https://doi.org/10.24263/2304-974X-2018-7-4-11
- Đurović, S., M. Vujanović, M. Radojković, J. Filipović, V. Filipović, U. Gašić, Ž. Tešić, P. Mašković, and Z. Zeković. 2020. The functional food production: application of stinging nettle leaves and its extracts in the baking of a bread. Food Chem. 312, 126091. Doi: https://doi.org/10.1016/j.foodchem.2019.126091
- Dziki, D., G. Cacak-Pietrzak, U. Gawlik-Dziki, A. Sułek, S. Kocira, and B. Biernacka. 2019. Effect of moldavian dragonhead (Dracocephalum moldavica L.) leaves on the baking properties of wheat flour and quality of bread. CyTA-J. Food 17(1), 536-543. Doi: https://doi.org/10.1080/19476337.2019.1609587
- Dziki, D., W.H. Hassoon, B. Biernacka, and U. Gawlik-Dziki. 2022. Dried and powdered leaves of Parsley as a functional additive to wheat bread. Appl. Sci. 12(15), 7930. Doi: https://doi.org/10.3390/app12157930
- El-Sayed, S.M. 2020. Use of spinach powder as functional ingredient in the manufacture of UF-Soft cheese. Heliyon 6(1), e03278. Doi: https://doi.org/10.1016/j.heliyon.2020.e03278
- Farzaei, M.H., Z. Abbasabadi, M.R.S. Ardekani, R. Rahimi, and F. Farzaei. 2013. Parsley: a review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med. 33(6), 815-826. Doi: https://doi.org/10.1016/S0254-6272(14)60018-2
- Filip, S. and R. Vidrih. 2015. Amino acid composition of protein-enriched dried pasta: is it suitable for a low-carbohydrate diet? Food Technol. Biotechnol. 53(3), 298-306. Doi: https://doi.org/10.17113/ftb.53.03.15.4022
- Galla, N.R., P.R. Pamidighantam, B. Karakala, M.R. Gurusiddaiah, and S. Akula. 2017. Nutritional, textural and sensory quality of biscuits supplemented with spinach (Spinacia oleracea L.). Int. J. Gastron. Food Sci. 7, 20-26. Doi: https://doi.org/10.1016/j.ijgfs.2016.12.003
- Gutierrez, R.M.P. and E.G. Velazquez. 2020. Glucopyranoside flavonoids isolated from leaves of Spinacia oleracea (spinach) inhibit the formation of advanced glycation end products (AGEs) and aldose reductase activity (RLAR). Biomed. Pharmacother. 128, 110299. Doi: https://doi.org/10.1016/j.biopha.2020.110299
- Howard, L.R., N. Pandjaitan, T. Morelock, and M.I. Gil. 2002. Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. J. Agric. Food Chem. 50(21), 5891-5896. Doi: https://doi.org/10.1021/jf020507o
- Jing, Y., X. Li, X. Hu, Z. Ma, L. Liu, and X. Ma. 2019. Effect of buckwheat extracts on acrylamide formation and the quality of bread. J. Sci. Food Agric. 99(14), 6482-6489. Doi: https://doi.org/10.1002/jsfa.9927
- Jridi, M., O. Abdelhedi, H. Kchaou, L. Msaddak, M. Nasri, N. Zouari, and N. Fakhfakh. 2019. Vine (Vitis vinifera L.) leaves as a functional ingredient in pistachio calisson formulations. Food Biosci. 31, 100436. Doi: https://doi.org/10.1016/j.fbio.2019.100436
- Junejo, S.A., A. Rashid, L. Yang, Y. Xu, S. Kraithong, and Y. Zhou. 2021. Effects of spinach powder on the physicochemical and antioxidant properties of durum wheat bread. LWT - Food Sci. Technol. 150, 112058. Doi: https://doi.org/10.1016/j.lwt.2021.112058
- Lim, P.Y., Y.Y. Sim, and K.L. Nyam. 2020. Influence of kenaf (Hibiscus cannabinus L.) leaves powder on the physico-chemical, antioxidant and sensorial properties of wheat bread. J. Food Meas. Charact. 14(5), 2425-2432. Doi: https://doi.org/10.1007/s11694-020-00489-y
- Massa, D., L. Incrocci, L. Botrini, G. Carmassi, C. Diara, P. lli De Paoli, and A. Pardossi. 2018. Modelling plant yield and quality response of fresh-market spinach (Spinacia oleracea L.) to mineral nitrogen availability in the root zone. Ital. J. Agron. 13(3), 1120. Doi: https://doi.org/10.4081/ija.2018.1120
- Mpofu, A., H.D. Sapirstein, and T. Beta. 2006. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agric. Food Chem. 54(4), 1265-1270. Doi: https://doi.org/10.1021/jf052683d
- Mumivand, H., M. Babalar, L. Tabrizi, L.E. Craker, M. Shokrpour, and J. Hadian. 2017. Antioxidant properties and principal phenolic phytochemicals of Iranian tarragon (Artemisia dracunculus L.) accessions. Hortic. Environ. Biotechnol. 58(4), 414-422. Doi: https://doi.org/10.1007/s13580-017-0121-5
- Nesslany, F., D. Parent-Massin, and D. Marzin. 2010. Risk assessment of consumption of methylchavicol and tarragon: The genotoxic potential in vivo and in vitro. Mutat. Res. - Genet. Toxicol. Environ. Mutagen. 696(1), 1-9. Doi: https://doi.org/10.1016/j.mrgentox.2009.11.003
- Pripdeevech, P. and S. Wongpornchai. 2012. Tarragon. pp. 504-511. In: Peter, K.V. (ed.). Handbook of herbs and spices. 2nd ed. Vol. 2. Elsevier, Abington Hall, UK. https://doi.org/10.1533/9780857095688.504
- Saavedra, G. and E. Maldonado. 2021. Influencia de factores ambientales, agronómicos, genéticos y fisiológicos en el contenido de carotenoides en frutas y hortalizas. Rev. Cienc. Tecnol. 1(13),87-96.
- Sany, H., H.A.H. Said-Al Ahl, and T. Astatkie. 2022. Essential oil content, yield, and components from the herb, leaf, and stem of curly-leafed parsley at three harvest days. J. Cent. Eur. Agric. 23(1), 54-61. Doi: https://doi.org/10.5513/JCEA01/23.1.3293
- Sgarbieri, V. 1998. Propiedades funcionais de proteínas em alimentos. Bol. SBCTA 32, 105-126.
- Singleton, V.L. and J.A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144-158. Doi: https://doi.org/10.5344/ajev.1965.16.3.144
- Skendi, A., M. Irakli, P. Chatzopoulou, and M. Papageorgiou. 2019. Aromatic plants of Lamiaceae family in a traditional bread recipe: Effects on quality and phytochemical content. J. Food Biochem. 43(11), e13020. Doi: https://doi.org/10.1111/jfbc.13020
- Skotnicka, M., F. Kłobukowski, and M. Śmiechowska. 2017. Prospects for development of highly satiating foods in Poland. Zeszyty Naukowe SGGW w Warszawie - Problemy Rolnictwa Światowego 17(4), 280-291. Doi: https://doi.org/10.22630/prs.2017.17.4.104
- Tajner-Czopek, A., M. Gertchen, E. Rytel, A. Kita, A.Z. Kucharska, and A. Sokół-Łętowska. 2020. Study of antioxidant activity of some medicinal plants having high content of caffeic acid derivatives. Antioxidants 9(5), 412. Doi: https://doi.org/10.3390/antiox9050412
- Velez, Z., M.A. Campinho, Â.R. Guerra, L. García, P. Ramos, O. Guerreiro, L. Felício, F. Schmitt, and M. Duarte. 2012. Biological characterization of Cynara cardunculus L. Methanolic extracts: Antioxidant, anti-proliferative, anti-migratory and anti-angiogenic activities. Agriculture 2(4), 472-492. Doi: https://doi.org/10.3390/agriculture2040472
- Waseem, M., S. Akhtar, M.F. Manzoor, A.A. Mirani, Z. Ali, T. Ismail, N. Ahmad, and E. Karrar. 2021. Nutritional characterization and food value addition properties of dehydrated spinach powder. Food Sci. Nutr. 9(2), 1213-1221. Doi: https://doi.org/10.1002/fsn3.2110
- Zhu, F., Y.Z. Cai, M. Sun, and H. Corke. 2008. Influence of Amaranthus betacyanin pigments on the physical properties and color of wheat flours. J. Agric. Food Chem. 56(17), 8212-8217. Doi: https://doi.org/10.1021/jf801579c