Skip to main navigation menu Skip to main content Skip to site footer

Breaking of dormancy in hawthorn yam (Dioscorea rotundata [Poir.]) by applying plant growth regulators

Breaking dormancy in apical, middle, and basal sections of hawthorn yam. Photo: D.-B. Sánchez-López

Abstract

Dormancy in hawthorn yam (Dioscorea rotundata [Poir.]) tubers poses challenges during storage and field planting due to prolonged dormancy periods, leading to fungal attacks and reduced sowing density. This study aimed to explore the efficacy of plant growth regulators (PGRs) in inducing early sprouting in commercial hawthorn yam tubers to mitigate these issues. Tubers were divided into apical, middle, and basal sections, treated with various PGRs, and sown in sterile substrate. Thiourea at 1.0 g L-1 emerged as the most effective treatment, promoting the highest percentage of sprouting across all observation periods. Thiourea at 2.0 g L-1 proved efficient for apical and middle sections, while mepiquat chloride at 2.0 mL L-1 stimulated sprouting in the basal part. These findings demonstrate the potential of PGRs in inducing early sprouting and enhancing germination uniformity in hawthorn yam tubers, offering practical implications for improved crop management.

Keywords

Vegetative propagation, Plantation crops, Sprouting, Storage, Dormancy breakers

XML PDF

References

  • Alcántara, J.S., J. Acero, J.D. Alcántara, and R.M. Sánchez. 2019. Principales reguladores hormonales y sus interacciones en el crecimiento vegetal. Nova 17(32), 109-129. Doi: https://doi.org/10.22490/24629448.3639
  • Bhatla, S.C. and M.A. Lal. 2023. Plant growth regulators: an overview. pp. 391-398. Plant physiology: development and metabolism. Springer, Singapore. Doi: https://doi.org/10.1007/978-981-99-5736-1_14
  • Chen, X., M. Zhang, M. Wang, G. Tan, M. Zhang, Y.X. Hou, B. Wang, and Z. Li. 2018. The effects of mepiquat chloride on the lateral root initiation of cotton seedlings are associated with auxin and auxin-conjugate homeostasis. BMC Plant Biol. 18(1), 361. Doi: https://doi.org/10.1186/s12870-018-1599-4
  • Davies, P.J. 2010. The plant hormones: their nature, occurrence, and functions. pp. 1-15. In: Davies, P.J. (ed.). Plant hormones: biosynthesis, signal transduction, action. Springer, Dordrecht, The Netherlands. Doi: https://doi.org/10.1007/978-1-4020-2686-7_1
  • Datir, S., R. Kumbhar, and P. Kumatkar. 2024. Understanding physiological and biochemical mechanisms associated with post-harvest storage of yam tuber (Dioscorea sp.). Technol. Hortic. 4(1) e004. Doi: https://doi.org/10.48130/tihort-0024-0001
  • El-Maarouf-Bouteau, H. and C. Bailly. 2008. Oxidative signaling in seed germination and dormancy. Plant Signal Behav. 3(3), 175-182. Doi: https://doi.org/10.4161/psb.3.3.5539
  • Epping, J. and N. Laibach. 2020. An underutilized orphan tuber crop—Chinese yam: a review. Planta 252, 58. Doi: https://doi.org/10.1007/s00425-020-03458-3
  • FAO. 2021. FAOSTAT. World yam production/yield quantities + (total). In: https://www.fao.org/faostat/en/#data/QCL/visualize; consulted: Julio, 2023.
  • Guo, H., Y. Lyv, W. Zheng, C. Yang, Y. Li, X. Wang, R. Chen, C. Wang, J. Luo, and L. Qu. 2021. Comparative metabolomics reveals two metabolic modules affecting seed germination in rice (Oryza sativa). Metabolites 11(12), 880. Doi: https://doi.org/10.3390/metabo11120880
  • Gul, Z. and N. Iqbal. 2023. Chemical-induced dormancy breaking of freshly harvested potato minitubers and its effect on subsequent growth and yield. Asian J. Adv. Agric. Res. 23(4), 9-25. Doi: https://doi.org/10.9734/ajaar/2023/v23i4474
  • Hamadina, E.I. and P.Q. Craufurd. 2015. Changes in free phenolics contents during tuber development, dormancy and sprouting in white yam (Dioscorea rotundata Poir.). Int. J. Plant Res. 5(2), 34-41. Doi: https://doi.org/10.5923/j.plant.20150502.02
  • Hendricks, S.B. and R.B. Taylorson. 1975. Breaking of seed dormancy by catalase inhibition. Proc. Natl. Acad. Sci. USA 72(1), 306-309. Doi: https://doi.org/10.1073/pnas.72.1.306
  • Kumari, N., S.K. Manhas, J. Jose-Santhi, D. Kalia, F.R. Sheikh, and R.K. Singh. 2024. Emerging into the world: the regulation and control of dormancy and sprouting in geophytes. J. Exp. Bot. 2024, erae216. Doi: https://doi.org/10.1093/jxb/erae216
  • Lim, S.D., J.A. Mayer, W.C. Yim, and J.C. Cushman. 2020. Plant tissue succulence engineering improves water‐use efficiency, water‐deficit stress attenuation and salinity tolerance in Arabidopsis. Plant J. 103(3), 1049-1072. Doi: https://doi.org/10.1111/tpj.14783
  • Mani, F., T. Bettaieb, N. Doudech, and C. Hannachi. 2013. Effect of hydrogen peroxide and thiourea on dormancy breaking of microtubers and field-grown tubers of potato. Afr. Crop Sci. J. 21(3), 221-234.
  • MinAgricultura, Ministerio de Agricultura y Desarrollo Rural Colombia. 2022. Agronet: área, producción y rendimiento nacional por cultivo. In: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1; consulted: July, 2023.
  • Nwogha, J.S., A.G. Wosene, M. Raveendran, J.E. Obidiegwu, H.O. Oselebe, R. Kambale, C.A. Chilaka, and V.R. Rajagopalan. 2023. Comparative metabolomics profiling reveals key metabolites and associated pathways regulating tuber dormancy in white yam (Dioscorea rotundata poir.). Metabolites 13(5), 610. Doi: https://doi.org/10.3390/metabo13050610
  • Nwogha, J.S., A.G. Wosene, M. Raveendran, H.O. Oselebe, J.E. Obidiegwu, and D. Amirtham. 2022. Physiological and molecular basis of dormancy in yam tuber: a way forward towards genetic manipulation of dormancy in yam tubers. Global J. Sci. Front. Res. 47-73.
  • Ranabhat, S., M. Dhital, A. Adhikari, B. Adhikari, and S. Shrestha. 2021. Concentration of thiourea is effective in breaking the dormancy of potato (Solanum tuberosum L.) varieties. Arch. Agric. Environ. Sci. 6(2), 129-133. Doi: https://doi.org/10.26832/24566632.2021.060203
  • Rao, M. and C. George. 1990. Studies to extend the dormancy of white yam (Dioscorea alata L.). J. Agric. Univ. Puerto Rico 74(3), 213-219. Doi: https://doi.org/10.46429/jaupr.v74i3.6653
  • Sanada, A., C. Cheng, H. Kikuno, and H. Shiwachi. 2018. Bulbil dormancy and formation in water yam (Dioscorea alata L.). Trop. Agric. Dev. 62(3), 109-114. Doi: https://doi.org/10.11248/jsta.62.109
  • Sánchez-López, D.B., L.L. Luna-Castellano, S.M. Regino-Hernández, and J. Cadena-Torres. 2021. Inducción de la brotación en tubérculos de ñame (Dioscorea rotundata Por.) con la aplicación de reguladores de crecimiento. Terra Latinoam. 39, e855. Doi: https://doi.org/10.28940/terra.v39i0.855
  • Santos-Cáceres, A.C., J.L. Barrera-Violet, and C.E. Cardona-Ayala. 2021. Postharvest application of growth regulators on Dioscorea alata (L.) and Dioscorea rotundata (Poir.). Rev. Colomb. Cienc. Hortic. 15(2), e12315. Doi: https://doi.org/10.17584/rcch.2021v15i2.12315
  • Shangguan, L., M. Chen, X. Fang, Z. Xie, P. Gong, Y. Huang, Z. Wang, and J. Fang. 2020. Comparative transcriptome analysis provides insight into regulation pathways and temporal and spatial expression characteristics of grapevine (Vitis vinifera) dormant buds in different nodes. BMC Plant Biol. 20, 390. Doi: https://doi.org/10.1186/s12870-020-02583-1
  • Taiz, L., I.M. Møller, A. Murphy, and E. Zeiger. 2023. Plant physiology and development. 7th ed. Sinauer; Oxford University Press, Oxford, UK. Doi: https://doi.org/10.1093/hesc/9780197614204.001.0001
  • Velázquez-Hernández, J.M., N. Durán-Puga, J.A. Ruíz-Corral, D.R. González-Eguiarte, F. Santacruz-Ruvalcaba, and A. Gallegos-Rodríguez. 2022. Distribución geográfica y usos de especies del género Dioscorea. E-CUCBA 19(10), 141-150. Doi: https://doi.org/10.32870/ecucba.vi19.273
  • Wickham, L.D. 2019. Successful manipulation of the growth cycle of yam (Dioscorea spp.) for year-round production for food security and climate change. Trop. Agric. 96, 27-39.
  • Zhu, T., H. Pei, Z. Li, M. Zhang, C. Chen, and S. Li. 2023. The postharvest application of carvone, abscisic acid, gibberellin, and variable temperature for regulating the dormancy release and sprouting commencement of mini-tuber potato seeds produced under aeroponics. Plants 12(23), 3952. Doi: https://doi.org/10.3390/plants12233952

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.