Skip to main navigation menu Skip to main content Skip to site footer

Effect of hydrocooling, calcium chloride on the postharvest of cape gooseberry fruits (Physalis peruviana L.)

Cape gooseberry fruit development. Photo: K.J. Carreño-López

Abstract

The cape gooseberry is an Andean fruit with significant nutritional and export potential in various international markets. The climacteric metabolism in cape gooseberry fruits results in a short post-harvest life, posing a threat to the commercialization of the fruits. Therefore, techniques are being explored to prolong the quality of the fruit. Hydrocooling (HC) and applying CaCl2 are efficient tools to enhance refrigerated storage in horticultural products. The impact of hydrocooling, CaCl2 application, and refrigeration at 4°C on the physical and chemical characteristics of cape gooseberry fruits during postharvest storage was assessed. Fruits subjected to HC exhibited reduced respiratory rate (RR) at harvest, quickly eliminating field heat. During postharvest, refrigeration extended the postharvest life of cape gooseberry fruits from 19 to 33 d. Fruits treated with HC, refrigeration, and CaCl2 (1%) demonstrated low mass loss, RR, and color index values. Additionally, they exhibited low pH values; however, this application did not significantly affect the maturity relationship. The application of CaCl2 did not affect total soluble solids (TSS), but TSS levels were influenced by HC with refrigeration, maintaining high levels until the end of storage. Therefore, it is recommended to apply HC, refrigeration (4°C), and 1% CaCl2 to cape gooseberry fruits, as this combination delays ripening and preserves post-harvest quality.

Keywords

Precooling, Ripening, Firmness, Cold storage, Respiratory rate

PDF

References

  1. Agronet. 2023. Rendimiento nacional por cultivo. Uchuva. In: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1; consulted: December, 2023.
  2. Agudelo-Sánchez, S., Y. Mosquera-Palacios, D. David-Úsuga, S. Cartagena-Montoya, and Y. Duarte-Correa. 2023. Effect of processing methods on the postharvest quality of cape gooseberry (Physalis peruviana L.). Horticulturae 9(10), 1158. Doi: https://doi.org/10.3390/horticulturae9101158
  3. Ali, I., N.A. Abbasi, and I. Hafiz. 2021. Application of calcium chloride at different phenological stages alleviates chilling injury and delays climacteric ripening in peach fruit during low-temperature storage. Int. J. Fruit Sci. 21(1), 1040-1058. Doi: https://doi.org/10.1080/15538362.2021.1975607
  4. Alvarado, P.A., C.A. Berdugo, and G. Fischer. 2004. Efecto de un tratamiento de frío (a 1,5° C) y la humedad relativa sobre las características físico-químicas de frutos de uchuva Physalis peruviana L. durante el posterior transporte y almacenamiento. Agron. Colomb. 22(2), 147-159.
  5. Álvarez-Herrera, J., H. Balaguera-López, and G. Fischer. 2012. Effect of irrigation and nutrition with calcium on fruit cracking of the cape gooseberry (Physalis peruviana L.) in the three strata of the plant. Acta Hortic. 928, 163-170. Doi: https://doi.org/10.17660/ActaHortic.2012.928.19
  6. Álvarez-Herrera, J.G., G. Fischer, and J.E. Vélez-Sánchez. 2015. Producción de frutos de uchuva (Physalis peruviana L.) bajo diferentes láminas de riego, frecuencias de riego y dosis de calcio. Rev. Colomb. Cienc. Hortic. 9(2), 222-233. Doi: http://dx.doi.org/10.17584/rcch.2015v9i2.4177
  7. Álvarez-Herrera, J.G., M. Jaime-Guerrero, and A.J. Reyes-Medina. 2021. Effect of maturity accelerants on the postharvest behavior of avocado (Persea americana Mill.) cv. Lorena. Rev. Colomb. Cienc. Hortic. 15(3), e13131. Doi: https://doi.org/10.17584/rcch.2021v15i3.13131
  8. Analdex, Asociación Nacional de Comercio Exterior. 2023. Informe exportaciones de uchuva 2022. In: https://www.analdex.org/wp-content/uploads/2023/02/Informe-Exportaciones-uchuva-2022.pdf; consulted: December, 2023.
  9. Balaguera-López, H.E., G. Fischer, and S. Magnitskiy. 2024. Physiology and biochemistry of the Physalis peruviana fruit. pp. 121-140. In: Ramadan, M.F. (Ed.). Handbook of Goldenberry (Physalis peruviana): Cultivation, processing and functionality. Elsevier, London.
  10. Balaguera-López, H.E., C.A. Martínez, and A.A. Herrera. 2015. Refrigeration affects the postharvest behavior of 1-methylcyclopropene treated cape gooseberry (Physalis peruviana L.) fruits with the calyx. Agron. Colomb. 33(3), 356-364. Doi: https://doi.org/10.15446/agron.colomb.v33n3.51896
  11. Cárdenas-Barboza, L.C., A.C. Paredes-Córdoba, L. Serna-Cock, M. Guancha-Chalapud, and C. Torres-León. 2021. Quality of Physalis peruviana fruits coated with pectin and pectin reinforced with nanocellulose from P. peruviana calyces. Heliyon 7(9), e07988. Doi: https://doi.org/10.1016/j.heliyon.2021.e07988
  12. Choi, J.H., S.H. Yim, K.S. Cho, M.S. Kim, Y.S. Park, S.K. Jung, and H.S. Choi. 2015. Fruit quality and core breakdown of “Wonhwang” pears in relation to harvest date and pre-storage cooling. Sci. Hortic. 188, 1-5. Doi: https://doi.org/10.1016/j.scienta.2015.03.011
  13. De, J., B. Bertoldi, M. Jubair, A. Gutierrez, J.K. Brecht, S.A. Sargent, and K.R. Schneider. 2020. Evaluation and comparison of postharvest cooling methods on the microbial quality and storage of Florida Peaches. HortTechnology 30(4), 504-509. Doi: https://doi.org/10.21273/HORTTECH04609-20
  14. Diaz, L.B. and R.M. Ávila. 2021. Tecnologías postcosecha para promover la vida de anaquel de frutos pequeños. Rev. Iberoam. Tecnol. Postcosecha 22(1), 29-49.
  15. Dorostkar, M., F. Moradinezhad, and E. Ansarifar. 2022. Effectiveness of postharvest calcium salts applications to improve shelf-life and maintain apricot fruit quality during storage. Rev. Fac. Nac. Agron. 75(2), 9983-9988. Doi: https://doi.org/10.15446/rfnam.v75n2.98060
  16. Duan, Y., G.B. Wang, O.A. Fawole, P. Verboven, X.R. Zhang, D. Wu, U.L. Opara, B. Nicolai, and K. Chen. 2020. Postharvest precooling of fruit and vegetables: A review. Trends Food Sci. Technol. 100, 278-291. Doi: https://doi.org/10.1016/j.tifs.2020.04.027
  17. Fischer, G., P.J. Almanza-Merchán, and D. Miranda. 2014. Importancia y cultivo de la uchuva (Physalis peruviana L.). Rev. Bras. Frutic. 36(1), 001-015. Doi: https://doi.org/10.1590/0100-2945-441/13
  18. Ganai, S.A., H. Ahsan, A. Tak, M.A. Mir, A.H. Rather, and S.M. Wani. 2018. Effect of maturity stages and postharvest treatments on physical properties of apple during storage. J. Saudi Soc. Agric. Sci. 17(3), 310-316. Doi: https://doi.org/10.1016/j.jssas.2016.07.001
  19. Gao, Q., Q. Tan, Z. Song, W. Chen, X. Li, and X. Zhu. 2020. Calcium chloride postharvest treatment delays the ripening and softening of papaya fruit. J. Food Process. Preserv. 44(8), e14604. https://doi.org/10.1111/jfpp.14604
  20. Gao, Q., T. Xiong, X. Li, W. Chen, and X. Zhu. 2019. Calcium and calcium sensors in fruit development and ripening. Sci. Hortic. 253, 412-421. Doi: https://doi.org/10.1016/j.scienta.2019.04.069
  21. González-Locarno, M., Y. Maza, A. Albis, E. Flórez, and C.D. Grande. 2020. Assessment of chitosan-rue (Ruta graveolens L.) essential oil-based coatings on refrigerated cape gooseberry (Physalis peruviana L.) quality. J. Appl. Sci. 10(8), 2684. Doi: https://doi.org/10.3390/app10082684
  22. ICONTEC. 1999. Norma Técnica Colombiana NTC4580. Frutas frescas. Uchuva: especificaciones. In: http://hdl.handle.net/20.500.12324/1271; consulted: November, 2023.
  23. Jaime-Guerrero, M., J.G. Álvarez-Herrera, and H.D. Ruiz-Berrío. 2022. Postharvest application of acibenzolar-S-methyl and plant extracts affect physicochemical properties of blueberry (Vaccinium corymbosum L.) fruits. Agron. Colomb. 40(1), 58-68. Doi: https://doi.org/10.15446/agron.colomb.v40n1.100044
  24. Makule, E., N. Dimoso, and S.A. Tassou. 2022. Precooling and cold storage methods for fruits and vegetables in Sub-Saharan Africa: a review. Horticulturae 8(9), 776. Doi: https://doi.org/10.3390/horticulturae8090776
  25. Mani, V.P., A. Abdul-Rahaman, A.C. Nimbare, Y.I. Buonamwen, K. Musah, S. Abdul-Wahab, and K. Ghulam, 2023. Effects of postharvest dipping of sodium hypochlorite and hydro-cooling on the quality of ‘Petomech’ tomato fruits. J. Postharvest Techno. 11(4), 37-48. Doi: http://jpht.in/MenuscriptFile/e438e558-4a70-4839-a866-358589abcc0f.pdf
  26. Nassarawa, S.S., N. Bao, X. Zhang, Q. Ru, and Z. Luo. 2024. Evaluation of light irradiation on anthocyanins and energy metabolism of grape (Vitis vinifera L.) during storage. Food Chem. 431, 137141. Doi: https://doi.org/10.1016/j.foodchem.2023.137141
  27. Ordóñez-Santos, L.E., J. Martínez-Girón, and M.E. Arias-Jaramillo. 2017. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in cape gooseberry juice. Food Chem. 233, 96-100. Doi: https://doi.org/10.1016/j.foodchem.2017.04.114
  28. Pervitasari, A.N., J.H. Kim, K. Cho, D. Choi, S.K. Yun, D. Kim, D.H. Kim, and J. Kim. 2021. Effects of hydrocooling and 1-MCP treatment on the quality changes of peach fruit during storage. Hortic. Sci. Technol. 39(6), 769-780. Doi: https://doi.org/10.7235/HORT.20210068
  29. Pinzón, E.H., A.J. Reyes, J.G. Álvarez-Herrera, M.F. Leguizamo, and J.G. Joya. 2015. Comportamiento del fruto de uchuva Physalis peruviana L., bajo diferentes temperaturas de almacenamiento. Rev. Cienc. Agr. 32(2), 26-35. Doi: https://doi.org/10.22267/rcia.153202.10
  30. Pinzón-Sandoval, E.H., A.J. Reyes, and J.G. Álvarez-Herrera. 2016. Efecto del cloruro de calcio sobre la calidad del fruto de uchuva (Physalis peruviana L.). Rev. Cienc. Agric. 13(2), 7-17. Doi: https://doi.org/10.19053/01228420.v13.n2.2016.5547
  31. Renu, R., K. Waghray, and P.D.S. Reddy. 2022. Standardization and modelling of storage conditions for hydro-cooling of mango (Mangifera indica) using response surface methodology. Research Square Preprint version 1. Doi: https://doi.org/10.21203/rs.3.rs-1465013/v1
  32. Reyes-Medina, A.J., E.H. Pinzón, and J.G. Álvarez-Herrera. 2017. Effect of calcium chloride and refrigeration on the quality and organoleptic characteristics of cape gooseberry (Physalis peruviana L.). Acta Agron. 66(1), 15-20. Doi: https://doi.org/10.15446/acag.v66n1.50610
  33. Saltveit, M.E. 2019. Respiratory metabolism. pp. 73-91. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Kidlington, UK. Doi: https://doi.org/10.1016/b978-0-12-813278-4.00004-X
  34. Tomar, M.S. and R.C. Pradhan. 2023. Effect of hydro and cold room pre-cooling on cooling kinetics and post-harvest quality of Amla. J. Sci. Ind. Res. 82, 899-905 Doi: https://doi.org/10.56042/jsir.v82i08.1315
  35. Vallarino, J.G. and S. Osorio. 2019. Organic acids. pp. 207-223. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Kidlington. Doi: https://doi.org/10.1016/B978-0-12-813278-4.00010-5
  36. Wang, Y. and L.E. Long. 2015. Physiological and biochemical changes relating to postharvest splitting of sweet cherries affected by calcium application in hydrocooling water. Food Chem. 181, 241-247. Doi: https://doi.org/10.1016/j.foodchem.2015.02.100
  37. Xu, Y., J. Liu, N. Zang, Z. Yin, and A. Wang. 2022. Effects of calcium application on apple fruit softening during storage revealed by proteomics and phosphoproteomics. Hortic. Plant. J. 8(4), 408-422. Doi: https://doi.org/10.1016/j.hpj.2022.03.002
  38. Yahia, E.M., A. Carrillo-López, and L.A. Bello-Pérez. 2019. Carbohydrates. pp. 175-205. In: Yahia, E.M. and A. Carrillo-López (eds.). Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Kidlington, UK. Doi: https://doi.org/10.1016/b978-0-12-813278-4.00009-9
  39. Zainal, B., P. Ding, I.S. Ismail, and N. Saari. 2019. Physico-chemical and microstructural characteristics during postharvest storage of hydrocooled rockmelon (Cucumis melo L. reticulatus cv. Glamour). Postharvest Biol. Technol. 152, 89-99. Doi: https://doi.org/10.1016/j.postharvbio.2019.03.001
  40. Zhang, L., J.W. Wang, B. Zhou, G. Li, Y.F. Liu, X.L. Xia, Z.G. Xiao, F. Lu, and S.J. Ji. 2019a. Calcium inhibited peel browning by regulating enzymes in membrane metabolism of ‘Nanguo’ pears during post-ripeness after refrigerated storage. Sci. Hortic. 244, 15-21. Doi: https://doi.org/10.1016/j.scienta.2018.09.030
  41. Zhang, L., P. Wang, F. Chen, S. Lai, H. Yu, and H. Yang. 2019b. Effects of calcium and pectin methylesterase on quality attributes and pectin morphology of jujube fruit under vacuum impregnation during storage. Food Chem. 289, 40-48. Doi: https://doi.org/10.1016/j.foodchem.2019.03.008

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 > >>