Evaluation of a formulation based on essential oils of Allium sativum (L.) and Thymus vulgaris (L.) combined with Yucca schidigera (Roezl) extract for control of Meloidogyne spp. in greenhouse tomatoes

Abstract
Tomato crop is among the more important worldwide due to its high production and consumption. However, tomatoes are affected by plant-parasitic nematode Meloidogyne spp., which reduce their yield and quality. To manage this issue, synthetic nematicides are commonly used. However, the use of synthetic nematicides impacts the soil microbiome and alters its structure affecting soil porosity and having effects on organic matter. In contrast, plant oils and extracts have emerged as alternative methods for controlling Meloidogyne spp. The objective of this research was characterize the oils of Thymus vulgaris and Allium sativum, along with an ethanolic extract of Yucca schidigera, and to evaluate their nematicidal activity when incorporated into a formulation against Meloidogyne spp. under greenhouse conditions. Phytochemical characterization was performed using qualitative techniques and measurements of antioxidant capacity (AC) and total polyphenol content (TPC). The experiment was conducted on tomato plants of the Rio Grande variety, with the following treatments: ATY formulation (A. sativum + T. vulgaris + Y. schidigera) at 8.0 L ha-1, ATY formulation at 12.0 L ha-1, chemical control (a.i. cadusafos, C10H23O2PS2) at 10.0 L ha-1, positive control (inoculated), and negative control (non-inoculated). Phytochemicals with nematicidal properties, such as alkaloids, flavonoids, terpenes, saponins, and tannins, were detected. The ATY formulation (A. sativum + T. vulgaris + Y. schidigera) at doses of 8.0 and 12.0 L ha-1 reduced the number of galls up to 97.29% and juvenile populations (J2) of Meloidogyne spp. up to 98.5%, and improved the plants' physiological development.
Keywords
Sustainable agriculture, Biological nematicides, Root-knot nematodes, Plant-derived oils, Plant extracts
References
- Akullo, J.O., B.N. Kiage-Mokua, D. Nakimbugwe, and J. Kinyuru. 2023. Phytochemical profile and antioxidant activity of various solvent extracts of two varieties of ginger and garlic. Heliyon 9(8), e18806. Doi: https://doi.org/10.1016/j.heliyon.2023.e18806
- Al-Saleem, M.S., A.S. Awaad, M.R. Alothman, and S.I. Alqasoumi. 2018. Phytochemical standardization and biological activities of certain desert plants growing in Saudi Arabia. Saudi Pharm. J. 26(2), 198-204. Doi: https://doi.org/10.32604/10.1016/j.jsps.2017.12.011
- Alam, E.A., and A.S.M. El-Nuby. 2019. Phytochemical and antinematodal screening on water extracts of some plant wastes against Meloidogyne incognita. Int. J. Pharm. Sci. 10(4), 1-14. https://www.ijcps.com/files/vol10issue4/1.pdf
- Arredondo-Valdés, R., F.D. Hernández-Castillo, M. Rocandio-Rodríguez, J.C. Anguiano-Cabello, M. Rosas-Mejía, V. Vanoye-Eligio, and J.C. Chacón-Hernández. 2021. In vitro antibacterial activity of Moringa oleifera ethanolic extract against tomato phytopathogenic bacteria. Phyton 90(3), 895. Doi: https://doi.org/10.32604/phyton.2021.014301
- Baek, S.C., K.H. Nam, S.A. Yi, M.S. Jo, K.H. Lee, Y.H. Lee, J. Lee, and K.H. Kim. 2019. Anti-adipogenic effect of β-carboline alkaloids from garlic (Allium sativum). Foods 8(12), 673. Doi: https://doi.org/10.3390/foods8120673
- Catani, L., B. Manachini, E. Grassi, L. Guidi, and F. Semprucci. 2023. Essential oils as nematicides in plant protection—a review. Plants. 12(6), 1418. Doi: https://doi.org/10.3390/plants12061418
- Chen, J., Q.X. Li, and B. Song. 2020. Chemical nematicides: recent research progress and outlook. J. Agric. Food Chem. 68(44), 12175-12188. Doi: https://doi.org/10.1021/acs.jafc.0c02871
- Chin, S., C.A. Behm, and U. Mathesius. 2018. Functions of flavonoids in plant–nematode interactions. Plants 7(4), 85. Doi: https://doi.org/10.3390/plants7040085
- Couillaud, J., L. Leydet, K. Duquesne, and G. Iacazio. 2021. The terpene mini-path, a new promising alternative for terpenoids bio-production. Genes 12(12), 1974. Doi: https://doi.org/10.3390/genes12121974
- D’Addabbo, T., M.P. Argentieri, J. Żuchowski, E. Biazzi, A. Tava, W. Oleszek, and P. Avato. 2020. Activity of saponins from Medicago species against phytoparasitic nematodes. Plants 9(4), 443. Doi: https://doi.org/10.3390/plants9040443
- El-Saber, G., A. Magdy Beshbishy, L. Wasef, Y.H. Elewa, A. Al-Sagan, M.E. Abd El-Hack, and H. Prasad Devkota. 2020. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 12(3), 872. Doi: https://doi.org/10.3390/nu12030872
- Fan, X., X. Xiao, W. Yu, B. Yu, J. He, P. Zheng, and X. Mao. 2024. Yucca schidigera purpurea-sourced arabinogalactan polysaccharides augments antioxidant capacity facilitating intestinal antioxidant functions. Carbohydr. Polym. 326, 121613. Doi: https://doi.org/10.1016/j.carbpol.2023.121613
- FAO. 2024. FAOSTAT Database. https://www.fao.org/faostat/en/#data/QI; consulted: November, 2024.
- Faria, J.M.S., I. Sena, B. Ribeiro, A.M. Rodrigues, C.M.N. Maleita, I. Abrantes, and A.C.D.S. Figueiredo. 2016. First report on Meloidogyne chitwoodi hatching inhibition activity of essential oils and essential oils fractions. J. Pest Sci. 89, 207-217. Doi: https://doi.org/10.1007/s10340-015-0664-0
- Galisteo, A., A. González-Coloma, P. Castillo, and M.F. Andrés. 2022. Valorization of the hydrolate byproduct from the industrial extraction of purple Alium sativum essential oil as a source of nematicidal products. Life 12(6), 905. Doi: https://doi.org/10.3390/life12060905
- Gómez, J., M.J. Simirgiotis, S. Manrique, M. Piñeiro, B. Lima, J. Bórquez, and A. Tapia. 2021. Uhplc-esi-ot-ms phenolics profiling, free radical scavenging, antibacterial and nematicidal activities of “yellow-brown resins” from Larrea spp. Antioxidants 10(2), 185. Doi: https://doi.org/10.32604/10.3390/antiox10020185
- Góngora-Chi, G.J., J. Lizardi-Mendoza, L. Quihui-Cota, Y.L. López-Franco, M.A. López-Mata, and R. Pérez-Morales. 2024. Yucca schidigera saponin rich extracts: evaluation of extraction methods and functional properties. Sustain. Chem. Pharm. 38, 101470. Doi: https://doi.org/10.1016/j.scp.2024.101470
- Greiffer, L., E. Liebau, F.C. Herrmann, and V. Spiegler. 2022. Condensed tannins act as anthelmintics by increasing the rigidity of the nematode cuticle. Sci. Rep. 12(1), 18850. Doi: https://doi.org/10.1038/s41598-022-23566-2
- Guo, Q., G. Du, H. Qi, Y. Zhang, T. Yue, J. Wang, and R. Li. 2017. A nematicidal tannin from Punica granatum L. rind and its physiological effect on pine wood nematode (Bursaphelenchus xylophilus). Pestic. Biochem. Physiol. 135, 64-68. Doi: https://doi.org/10.1016/j.pestbp.2016.06.003
- Jang, J.Y., Q. Le Dang, Y.H. Choi, G.J. Choi, K.S. Jang, B. Cha, and J.C. Kim. 2015. Nematicidal activities of 4-quinolone alkaloids isolated from the aerial part of Triumfetta grandidens against Meloidogyne incognita. J. Agric. Food Chem. 63(1), 68-74. Doi: https://doi.org/10.1021/jf504572h
- Jardim, I.N., D.F. Oliveira, V.P. Campos, G.H. Silva, and P.E. Souza. 2020. Garlic essential oil reduces the population of Meloidogyne incognita in tomato plants. Eur. J. Plant Pathol. 157, 197-209. Doi: https://doi.org/10.1007/s10658-020-02000-1
- Kankam, F. and J. Adomako. 2014. Influence of inoculum levels of root knot nematodes (Meloidogyne spp.) on tomato (Solanum lycopersicum L.). Asian J. Agric. Food Sci. 2(2), 171-178. https://ajouronline.com/index.php/AJAFS/article/view/1183
- Khan, A., M. Asif, M. Tariq, B. Rehman, K. Parihar, and M.A. Siddiqui. 2017. Phytochemical investigation, nematostatic and nematicidal potential of weeds extract against the root-knot nematode, Meloidogyne incognita in vitro. Asian J. Biol. Sci. 10, 38-46. Doi: Doi: https://doi.org/10.18781/10.3923/ajbs.2017.38.46
- Lin, D., M. Xiao, J. Zhao, Z. Li, B. Xing, X. Li, and S. Chen. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21(10), 1374. Doi: https://doi.org/10.3390/molecules21101374
- Matsuura, H. 2001. Saponins in garlic as modifiers of the risk of cardiovascular disease. J. Nutr. 131(3), 1000-1005. Doi: https://doi.org/10.1093/jn/131.3.1000S
- Nhung, T.T.P. and L.P.T. Quoc. 2024. Assessment of the antioxidant and nematicidal activities of an aqueous extract of Chromolaena odorata (L.) King and Robins against Radopholus similis infestation in Cavendish banana plants: An in vitro and in vivo study. J. Plant Biotechnol. 51, 11-23. Doi: https://doi.org/10.5010/JPB.2024.51.002.011
- Padilla-Hurtado, B., Y. Morillo-Coronado, S. Tarapues, S. Burbano, M. Soto-Suárez, R. Urrea, and N. Ceballos-Aguirre. 2022. Evaluation of root-knot nematodes (Meloidogyne spp.) population density for disease resistance screening of tomato germplasm carrying the gene Mi-1. Chil. J. Agric. Res. 82(1), 157-166. Doi: https://doi.org/10.4067/S0718-58392022000100157
- Ramírez-Méndez, J.E., F.D. Hernández-Castillo, G. Gallegos-Morales, D. Jasso-Cantú, R. Arredondo-Valdés, and M.A. Tucuch-Pérez. 2024. Efectividad biológica de extractos de Agave striata y Fouquieria splendens sobre Pythium aphanidermatum y Rhizoctonia solani in vitro. Rev. Mex Fitopatol. 42(4), 40. Doi: https://doi.org/10.18781/R.MEX.FIT.2024-23
- Saleem, A., M. Afzal, M. Naveed, S.I. Makhdoom, M. Mazhar, T. Aziz, and A. Alshammari. 2022. HPLC, FTIR and GC-MS analyses of thymus vulgaris phytochemicals executing in vitro and in vivo biological activities and effects on COX-1, COX-2 and gastric cancer genes computationally. Molecules 27(23), 8512. Doi: https://doi.org/10.3390/molecules27238512
- Sithole, N.T., M.G. Kulkarni, J.F. Finnie, and J. Van Staden. 2021. Potential nematicidal properties of plant extracts against Meloidogyne incognita. S. Afr. J. Bot. 139, 409-417. Doi: https://doi.org/10.1016/j.sajb.2021.02.014
- Tucuch-Pérez, M.A., R. Arredondo-Valdés, F.D. Hernández-Castillo, Y.M. Ochoa-Fuentes, E.I.L. Alcalá, and J.C. Anguiano-Cabello. 2023. Phytochemical compounds from desert plants to management of plant-parasitic nematodes. pp. 167-178. In: Aguillón-Gutiérrez, D.R., C. Torres-León, and J.A. Aguirre-Joya (eds.). Aromatic and medicinal plants of drylands and deserts. CRC Press, Boca Raton, FL. Doi: https://doi.org/10.1201/9781003251255
- Tucuch-Pérez, M.A., J.J. Bojórquez-Vega, R. Arredondo-Valdes, F.D. Hernández-Castillo, and J.C. Anguiano-Cabello. 2021. Actividad biológica de extractos vegetales del semidesierto mexicano para manejo de Fusarium oxysporum de tomate. Ecosis. Recur. Agropec. 8(2), e2745. Doi: https://doi.org/10.19136/era.a8n2.2745
- Velasco-Azorsa, R., H. Cruz-Santiago, I. Cid del Prado-Vera, M.V. Ramirez-Mares, M.D.R. Gutiérrez-Ortiz, N.F. Santos-Sánchez, and B. Hernández-Carlos. 2021. Chemical characterization of plant extracts and evaluation of their nematicidal and phytotoxic potential. Molecules 26(8), 2216. Doi: https://doi.org/10.3390/molecules26082216