Composición química volátil del aceite esencial colombiano de Piper gorgonillense Trel. & Yunck. y su actividad repelente y fumigante contra el Tribolium castaneum Herbst
Resumen
Los aceites esenciales (AEs) son mezclas de compuestos orgánicos volátiles, en su mayoría terpenos, provenientes del metabolismo secundario de las plantas. Estos tienen diversas actividades sobre insectos que dañan las cosechas y producen grandes pérdidas en la economía y la agricultura mundial. El Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), es una de las principales plagas causante de la pérdida de gran cantidad de alimentos almacenados. El objetivo de este estudio fue evaluar la composición química volátil del aceite esencial de Piper gorgonillense Trel. & Yunck. y su actividad repelente y fumigante sobre el T. castaneum. La composición volátil se determinó empleando cromatografía de gases acoplada a espectrometría de masas. Los compuestos mayoritarios encontrados en el AE fueron b-cariofileno (28.7%), a-copaeno (13.5%), y d-cadinene (7.3%). Los porcentajes de repelencia obtenidos fueron de 78 y 90% a una concentración de 1% con tiempos de exposición de 48 y 72 horas, respectivamente. La actividad fumigante hace referencia a la acción insecticida que tiene el vapor del aceite esencial sin tener contacto directo con los insectos, este fue de 100% a una concentración de 350 µg mL-1. Los resultados mostraron que el AE de P. gorgonillense presentó propiedades repelentes e insecticidas para el control biológico de T. castaneum.
Palabras clave
Aceite esencial de cultivos, Repelencia, Mortalidad, Terpenos, Cromatografía de gases
Citas
Adams, R.P. 2007. Identification of essential oil components by gas chromatography/ mass spectroscopy. 4th ed. Allured Publishing, Carol Stream, IL.
Adamski, Z., S.A. Bufo, S. Chowański, P. Falabella, J. Lubawy, P. Marciniak, J. Pacholska-Bogalska, R. Salvia, L. Scrano, M. Słocińska, M. Spochacz, M. Szymczak, A. Urbański, K. Walkowiak-Nowicka, and G. Rosiński. 2019. Beetles as model organisms in physiological, biomedical and environmental studies. A review. Front Physiol. 10, 319. Doi: 10.3389/fphys.2019.00319
Adarkwah, C., D. Obeng, and S. Prozell. 2018. Toxicity and protectant potential of Piper guineense (Piperaceae) and Senna siamea (Fabaceae) mixed with diatomaceous earth for the management of three major stored product beetle pests. Int. J. Pest Manage. 64, 128-139. Doi: 10.1080/09670874.2017.1346327.
Andrés, M.F., G.E. Rossa, E. Cassel, R.M.F. Vargas, O. Santana, C.E. Díaz, and A. González. 2017. Biocidal effects of Piper hispidinervum (Piperaceae) essential oil and synergism among its main components. Food Chem. Toxicol. 109, 1086-1092. Doi: 10.1016/j.fct.2017.04.017
Athanassiou, C.G., N.G. Kavallieratos, and J.F. Campbell. 2016. Capture of Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae) in floor traps: the effect of previous captures. J. Econ. Entomol. 109(1), 461-466. Doi: 10.1093/jee/tov307.
Chaubey, M.K. 2011. Insecticidal properties of Zingiber officinale and Piper cubeba essential oils against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). J. Biol. Active Prod. Nature 1, (5-6), 306-313. Doi: 10.1080/22311866.2011.10719098
Chellappandian, M., P. Vasantha, S. Senthil, S. Karthi, A. Thanigaivel, A. Ponsankar, and W.B. Hunter. 2018. Botanical essential oils and uses as mosquitocides and repellents against dengue. Environ. Int. 113, 214-230. Doi: 10.1016/j.envint.2017.12.038.
Daglish, G.J., M.K. Nayak, H. Pavic, and L.W. Smith. 2015. Prevalence and potential fitness cost of weak phosphine resistance in Tribolium castaneum (Herbst) in eastern Australia. J. Stored Prod. Res. 61, 54-58. Doi: 10.1016/j.jspr.2014.11.005
Da Silva, J.K.R., L.C. Pinto, R.M.R. Burbano, R.C. Montenegro, E.F. Guimarães, E.H.A. Andrade, and J.G.S. Maia. 2014. Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Ind. Crops Prod. 58, 55-60. 10.1016/j.indcrop.2014.04.006
Da Silva, M.F.R., P.C. Bezerra, C.S. de Lira, A.B.N. de Lima, A.C.A. Neto, E.V. Pontual, and D.M.D. Navarro. 2016. Composition and biological activities of the essential oil of Piper corcovadensis (Miq.) C. DC (Piperaceae). Exp. Parasitol. 165, 64-70. Doi: 10.1016/j.exppara.2016.03.017
De Alfonso, I., S. Vacas, and J. Primo. 2014. Role of α-copaene in the susceptibility of olive fruits to Bactrocera Oleae (Rossi). J. Agric. Food Chem. 62(49), 11976-11979. Doi: 10.1021/jf504821a
De Oliveira-Tintino, C., R.T. Pessoa, M. Fernandes, I. Alcântara, B. Silva, M. Oliveira, A. Martins, M. Silva, S. Tintino, F. Rodrigues, J. Costa, S. Lima, M. Kerntopf, T. Silva, and I. Menezes. 2018. Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St.-Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in in vivo models. Phytomedicine 41, 82-95. Doi: 10.1016/j.phymed.2018.02.004
Flat, R.A., R.T. Cunningham, T.R. Mon, and J.O. John. 1994. Male lures for mediterranean fruitfly (Ceratitis capitata wied.): Structural analogs of α-copaene. J. Chem. Ecol. 20(10), 2595-609. Doi: 10.1007/BF02036194
Gamboa, F., C.C. Muñoz, G. Numpaque, L.G. Sequeda, S.J. Gutierrez, and N. Tellez. 2018. Antimicrobial activity of Piper marginatum Jacq and Ilex guayusa Loes on microorganisms associated with periodontal disease. Int. J. Microbiol. 2018, 4147383-4147392. Doi: 10.1155/2018/4147383.
Govindarajan, M., M. Rajeswary, and G. Benelli. 2016. δ-cadinene, calarene and δ-4-carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Comb. Chem. High Throughput Screen. 19(7), 565-571. Doi: 10.2174/1386207319666160506123520
Guo, X., X. Shang, B. Li, X.Z. Zhou, H. Wen, and J. Zhang. 2017. Acaricidal activities of the essential oil from Rhododendron nivale Hook. f. and its main compund, δ-cadinene against Psoroptes cuniculi. J. Vet. Parasitol. 236, 51-54. Doi: 10.1016/j.vetpar.2017.01.028
Idárraga, A. and R. Callejas. 2011. Análisis florístico de la vegetación del Departamento de Antioquia. In: Idárraga, A., R. del C. Ortiz, R. Callejas, and M. Merello (eds.). Flora de Antioquia: catálogo de las plantas vasculares. vol. II. Listado de las plantas vasculares del departamento de Antioquia. Programa Expedición Antioquia-2103. Series Biodiversidad y Recursos Naturales. Universidad de Antioquia; Missouri Botanical Garden; Oficina de Planeación Departamental de la gobernación de Antioquia, Editorial D’Vinni, Bogota.
Jaramillo-Colorado, B., I. Martelo, and E. Duarte. 2012. Antioxidant and repellent activities of the essential oil from Colombian Triphasia trifolia (Burm. f.) P. Wilson. J. Agric. Food Chem. 60, 6364-6368. Doi: 10.1021/jf300461k
Jaramillo-Colorado, B.E., N. Pino, and A. Gonzalez. 2019a. Volatile composition and biocidal (antifeedant and phytotoxic) activity of the essential oils of four Piperaceae species from Choco-Colombia. Ind. Crops Prod. 138, 111463. 10.1016/j.indcrop.2019.06.026
Jaramillo-Colorado, B.E., S.A. Suarez, and V. Marrugo. 2019b. Volatile chemical composition of essential oil from Bursera graveolens (Kunth) Triana & Planch and their fumigant and repellent activities. Acta Sci. Biol. Sci. 41, e46822. Doi: 10.4025/actascibiolsci.v41i1.46822
Jaramillo, B.E., F.M. Palacio, and E. Duarte. 2020. Antioxidant and biological activities of essential oil from Colombian Swinglea glutinosa (Blanco) Merr fruit. Acta Sci. Biol. Sci, 42, e51639. Doi: 10.4025/actascibiolsci.v42i1.51639.
Kendra, P.E., D. Owens, W.S. Montgomery, T.I. Narvaez, G.R. Bauchan, E.Q. Schnell, N. Tabanca, and D. Carrillo. 2017. α-Copaene is an attractant, synergistic with quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae). PLoS One 12(6), e0179416. Doi: 10.1371/journal.pone.0179416
Kendra, P.E., W.S. Montgomery, E.Q. Schnell, M.A. Deyrup, and N.D. Epsky. 2016. Efficacy of α-copaene, cubeb, and eucalyptol lures for detection of redbay Ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). J. Econ. Entomol. 109(6), 2428-2435. Doi: 10.1093/jee/tow214
Kim, S.-I., J.-S. Yoon, J.W. Jung, K.-B. Hong, Y.-J. Ahn, and H.W. Kwon. 2010. Toxicity and repellency of origanum essential oil and its components against Tribolium castaneum (Coleoptera: Tenebrionidae) adults. J. Asia-Pac. Entomol. 13(4), 369-373. Doi: 10.1016/j.aspen.2010.06.011
Koyama, S., A. Purk, M. Kaur, H.A. Soini M.V. Novotny, K. Davis, C. Kao, H. Matsunami, and A. Mescher. 2019. Beta-caryophyllene enhances wound healing through multiple routes. PLoS ONE 14(12), e0216104. 10.1371/journal.pone.0216104
Kundu, A., S.S. Walia, N.A. Shakil, J. Kumar, and K. Annapurna. 2013. Cadinene sesquiterpenes from Eupatorium adenophorum and their antifungal activity. J. Environ. Sci. Health B. 48(6), 516-22. Doi: 10.1080/03601234.2013.761921
Leite, N.F., C.E. Sobral, R.S. Albuquerque, D.I. Brito, A.K. Lavor, L.B. Alencar, S.R. Tintino, J.V.A. Ferreira, F.G. Figueredo, L.F. Lima, F.A.B. Cunha, A.I. Pinho, and H.D.M. Coutinho 2013. Actividad antiparasitaria in vitro citotóxica de cariofileno y eugenol contra Trypanosoma cruzi y Leishmania brasiliensis. Rev. Cuba. Plantas Med. 18(4), 522-528.
Gomes-Macêdo, C.G., M.Y.N. Fonseca, A.D. Caldeira, S.P. Castro, W. Pacienza, M.P.G. Borsodi, A. Sartoratto, M. Silva, C. Salgado, B. Rossi-Bergmann, and K.C.F. Castro. 2020. Leishmanicidal activity of Piper marginatum Jacq. from Santarém-PA against Leishmania amazonensis. Exp. Parasitol. 210, 107847. Doi: 10.1016/j.exppara.2020.107847
Nararak, J., S. Sathantriphop, and M. Kongmee. 2019. Excito-repellent activity of β-caryophyllene oxide against Aedes aegypti and Anopheles minimus. Acta Trop. 197, 105030. Doi: 10.1016/j.actatropica.2019.05.021
Opit, G.P., T.W. Phillips, M.J. Aikins, and M.M. Hasan. 2012. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 105, 1107-1114. Doi: 10.1603/ec12064
Ordaz, G., H. D’Armas, D. Yáñez, and S. Moreno. 2011. Composición química de los aceites esenciales de las hojas de Helicteres guazumifolia (Sterculiaceae), Piper tuberculatum (Piperaceae), Scoparia dulcis (Arecaceae) y Solanum subinerme (Solanaceae), recolectadas en Sucre, Venezuela. Rev. Biol. Trop. 59(2), 585-595.
Oyemitan, I.A., O.A. Olayera, A. Alabi, L.A. Abass, C.A. Elusiyan, A.O. Oyedeji, and M.A. Akanmu. 2015. Psychoneuropharmacological activities and chemical composition of essential oil of fresh fruits of Piper guineense (Piperaceae) in mice. J. Ethnopharmacol. 166, 240-249. Doi: 10.1016/j.jep.2015.03.004
Parisotto, J., J. Bidone, L.G. Lucca, G. Araújo, M. Falkembach, M. Marques, A. Horn, M. Santos, V. Veiga Jr., R. Limberger, H. Teixeira, C. Dora, and L. Koester. 2020. Healing activity of hydrogel containing nanoemulsified β-caryophyllene. Eur. J. Pharm. Sci. 148, 105318. Doi: 10.1016/j.ejps.2020.105318
Parra, J.E., L.E. Cuca, and A. González. 2019. Antifungal and phytotoxic activity of benzoic acid derivatives from inflorescences of Piper cumanense. Nat. Prod. Res. Doi: 10.1080/14786419.2019.1662010
Plata, A., J. Mendonça Campos, G. Silva Rolim. L.C. Martínez, M. Santos, F. Fernandes, J. Serrão, and J. Zanuncio. 2018. Terpenoid constituents of cinnamon and clove essential oils cause toxic effects and behavior repellency response on granary weevil, Sitophilus granaries. Ecotoxicol. Environ. Saf. 156, 263-270. Doi: 10.1016/j.ecoenv.2018.03.033
Rengifo, A.M., L.M. Muñoz, F.A. Cabezas, and J.A. Guerrero. 2019. Edematic and coagulant effects caused by the venom of Bothrops rhombeatus neutralized by the ethanolic extract of Piper auritum. J. Ethnopharmacol. 242, 112046. Doi: 10.1016/j.jep.2019.112046
Santos, T.G., K. Fukuda, M.J. Kato, A. Sartorato, M.C. Duarte, A.L.T. Ruiz, J. Carvalho, F. Augusto, F. Marques, and B.H.L.S. Maia. 2014. Characterization of the essential oils of two species of Piperaceae by one- and two-dimensional chromatographic techniques with quadrupole mass spectrometric detection. Microchem. J. 115, 113-120. 10.1016/j.microc.2014.02.014
Sauter, I.P., G.E. Rossa, A.M. Lucas, S.P. Cibulski, P.M. Roehe, L.A.A. da Silva, M. Rott, R. Vargas, E. Cassel, and G.L. von Poser. 2012. Chemical composition and amoebicidal activity of Piper hispidinervum (Piperaceae) essential oil. Ind. Prod. Crops. 40, 292-295. Doi: 10.1016/j.indcrop.2012.03.025.
Scott, I.M., H.R. Jensen, B.J. Philogène, and J.T. Arnason. 2008. A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochem. Rev. 7(1), 65. Doi: 10.1007/s11101-006-9058-5.
Singh, P. and A.K. Pandey. 2018. Prospective of essential oils of the genus Mentha as biopesticides: A review. Front. Plant Sci. 9, 1295. Doi: 10.3389/fpls.2018.01295
The Plant List. 2013. Version 1.1. Piper gorgonillense. Dabase in: http://www.theplantlist.org/tpl1.1/record/tro-50088832; consulted: April, 2020.
Wu, W., F. Liu, and R.W. Davis. 2018. Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds. Metab. Eng. Commun. 6, 13-21. Doi: 10.1016/j.meteno.2018.01.001
Xu, G.L., D. Geng, M. Xie, K.Y. Teng, Y.X. Tian, Z.Z. Liu, C. Yan, Y. Wang, X. Zhang, Y. Song, Y. Yang, and G.M. She. 2015. Chemical composition, antioxidative and anticancer activities of the essential oil: Curcumae Rhizoma-Sparganii Rhizoma, a traditional herb pair. Molecules 20(9), 15781-15796. 10.3390/molecules200915781
Zhang, Z., Y. Xie, Y. Wang, Z. Lin, L. Wang, and G. Li. 2017. Toxicities of monoterpenes against housefly, Musca domestica L. (Diptera: Muscidae). Environ. Sci. Pollut. Res. 24(31), 24708-24713. Doi: 10.1007/s00436-012-3105-5