Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Maíz Bt transgénico en Sur- y Centroamérica: los pro y contra

Bt maize and Spodopera frugiperda. Photo: I. Zenner-de-Polanía

Resumen

La autorización official de siembras de Bt maíz fue otorgada en la mayoría de los países de Centro y Sur-América hace más de 20 años, lo que ha despertado inquietudes, revelado inconsistencias en la información producida para los agricultores, mostrado incognitas, motivado comentarios y producido publicaciones, a menudo no científicas. Dado el impacto teórico, ambiental, económico y salubridad y desarrollo de resistencia del cogollero del maíz, se considera que a pesar de la capacidad investigativa existente en estos países, la literatura científica reciente es más bien escasa, probablemente, por falta de financiación de estudios y la influencia de los dueños de los patentes, de la producción y venta de semillas de maíz transgéncio. Con esta revisión, se pretende relacionar los beneficios y desventajas originados por la siembra de los híbridos de maíz a los que se han incorporado Crys de la bacteria Bacillus thuringiensis. De los documentos revisados, todavía no se desprende una conclusión definitiva; habrá que esperar años para poder definir si las siembras de maíz transgénico representaron un beneficicio para los cultivadores y consumidores de esta especie vegetal originaria de esta zona. Sin embargo, en este momento se podría deducir que existe un equilibrio entre los beneficios y los riesgos de las siembras de maiz Bt.

Palabras clave

OGM, impacto ambiental, resistencia, costo-beneficio, insectos benéficos

PDF (English)

Citas

Admin-Bt. 2016. ¿En dónde se siembran y dónde están prohibidos los cultivos transgénicos? In: http://www.siquierotransgenicos.cl/2016/12/10/en-donde-se-cultivan-y-donde-estan-prohibidos-los-transgenicos/; consulted: September, 2019.

Agro-Bio. 2018. Con 95 mil hectáreas, transgénicos aportan a la economía de Colombia. In: https://www.agrobio.org/transgenicos-colombia; consulted: September, 2019.

Aguirre, L.A., A. Hernández-Juárez, M. Flores, E. Cerna, J. Landeros, G. Frias, and M.K. Harris. 2016. Evaluation of foliar damage by Spodoptera fruiperda (Lepidoptera: Noctuidae) to genetically modified corn (Poales: Poaceae) in Mexico. Fla Entomol. 99(2), 276-280. Doi: 10.1653/024.099.0218

Araujo, O.G., S.M. Mendes, A.P.S.A. Rosa, R.C. Marucci, C.A. Santos, T.A.N. Barbosa, and A.S. Dias. 2013. Suscetibilidade de biótipos de Spodoptera frugiperda à milho Bt e arroz. In: http://www.alice.cnptia.embrapa.br/alice/bitstream/doc/962135/1/Suscetibilidadebiotipo.pdf; consulted: September, 2019.

Argenbio. 2020. Cultivos transgénicos aprobados en Argentina. In: http://www.argenbio.org/cultivos-transgenicos; consulted: July, 2020.

Arias, R., M. Portilla, J.D. Ray, C.A. Blanco, S.A. Simpson, and B. Sheffler. 2015. Ecology, behavior, and bionomics first genotyping of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) progeny from crosses between Bt-resistant and Bt-susceptible populations, and 65-locus discrimination of isofamilies. Res. Rev.: J. Bot. Sci. 4, 18-29.

Arthropod Pesticide Resistance Database. s.f. Spodoptera frugiperda. https://www.pesticideresistance.org/display.php?page=species&arId=200; consulted: June, 2021.

Ayra-Pardo, C., L. Rodríguez-Cabrera, Y. Fernández-Parlá, and P. Téllez-Rodríguez. 2006. Increased activity of a hybrid Bt toxin against Spodoptera frugiperda larvae from a maize field in Cuba. Biotecnol. Aplic. 23, 236-239.

Biotecnologíasi. 2015. ¡Beneficios del maíz GM en Cuba! https://biotecnologiasi.tumblr.com/post/119792336492/el-maiz-bt-resistente-a-insectos-fue; consulted: june 2020.

BFSTD, Brazilian Federal Science and Technology Department. 2007. Commercial release of genetically modified corn, Guardian Corn (MON 810). Technical Opinion No. 1.100. CTNBio, Brasilia.

Blanco, C.A., W. Chiaravalle, M. Dalla-Rizza, J.R. Farias, M.F. García-Degano, G. Gastaminza, D. Mota-Sánchez, M.G. Murúa, C. Omoto, B.K. Pieralisi, J. Rodríguez, J.C. Rodríguez-Maciel, H. Terán-Santofimio, A.P. Terán-Vargas, S.J. Valencia, and E. Willink. 2016. Current situation of pests targeted by Bt crops in Latin America. Curr. Opin. Insect Sci. 15, 131-138. 10.1016/j.cois.2016.04.012

Blanco, C.A., M. Portilla, J.L. Jurat-Fuentes, J.F. Sánchez, D. Viteri, P. Vega-Aquino, A.P. Terán-Vargas, A. Azuara-Domínguez, J.D. López Jr., R. Arias, Y.-C. Zhu, D. Lugo-Barrera, and R. Jackson. 2010. Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis. Southwest. Entomol. 35(3), 409-415. Doi: 10.3958/059.035.0325

Brookes, G. and P. Barfoot. 2018. GM crops: global socio-economic and environmental impacts 1996-2016. PG Economics, Dorchester, UK.

Chandrasena, D.I., A.M. Signorini, G. Abratti, N.P. Storer, M.L. Olaciregui, A.P. Alves, and C.D. Pilcher. 2018. Characterization of field‐evolved resistance to Bacillus thuringiensis‐derived Cry1F δ‐endotoxin in Spodoptera frugiperda populations from Argentina. Pest. Manage. Sci. 74, 746-754. Doi: 10.1002/ps.4776

Chaparro-Giraldo, A., J.T. Blanco M., and S.A. López-Pazos. 2015. Evidencia de flujo de genes entre maíces transgénicos y no transgénicos in Colombia. Agron. Colomb. 33(3), 297-304. Doi: 10.15446/agron.colomb.v33n3.51505

Chauvet, M. and E. Lazos. 2014. El maíz transgénico en Sinaloa: ¿tecnología inapropiada, obsoleta o de vanguardia? Implicaciones socioeconómicas de la posible siembra comercial. Sociológica 29(82), 7-44.

Curis, M.C. and M.A.T.I. Bertolaccini. 2013. Influencia de presas criadas sobre maíces Bt sobre parámetros biológicos de Eriopis connexa (Coleoptera: Coccinellidae). Rev. Ciênc. Agrár. 36(2), 174-181.

Fatoretto, J., A.P. Michel, M.C. Silva Filho, N. Silva, and S. Stewart. 2017. Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil. J. Integr. Pest Manage. 8(1), 17. Doi: 10.1093/jipm/pmx011

Farias, J.R., D.A. Andow, R.J. Horikoshi, D. Bernardi, R.S. Ribeiro, A.R.B. Nascimento, A. C. Santos, and C. Omoto. 2016. Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Pest Manage. Sci. 72(12), 2295-2302. Doi: 10.1002/ps.4274

Farias, J.R., D.A. Andow, R.J. Horikoshi, R.J. Sorgatto, P. Fresia, A.C. Santos, and C. Omoto. 2014. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 64, 150-158. Doi: 10.1016/j.cropro.2014.06.019

FAS, USDA Foreign Agricultural Service. 2020. World agricultural production. Circular series WAP 2. In: https://apps.fas.usda.gov/psdonline/circulars/production.pdf, consulted: March, 2020.

Flores, F. and E. Balbi. 2014. Evaluación del daño de oruga militar (Spodoptera frugiperda) en diferentes híbridos comerciales de maíz transgénico. Informe de Actualización Técnica No 31. INTA, Córdoba, Argentina.

Frizzas, M.R., C.M. Oliveira, and C. Omoto. 2017. Diversity of insects under the effect of Bt maize and insecticides. Arq. Inst. Biol. 84, e0062015. Doi: 10.1590/1808-1657000062015

Frommel, M., F. Capdevielle, B. Costa and J. Machado. 2006. Evolución del análisis de riesgo de vegetales genéticamente modificados en Uruguay. pp. 11-17. In: Transgénicos en Uruguay – Construyendo una realidad participativa. Serie Técnica 1. DINAMA; PNUMA; GEF, Montevideo.

Fundación Antama. 2013. La superficie mundial de cultivos MG supera los 170 millones de hectáreas en 2012. In: https://fundacion-antama.org/la-superficie-mundial-de-cultivos-biotecnologicos-supera-las-170-millones-de-hectareas-en-2012/; consulted: September, 2019.

Galeano, P., C. Martínez Debat, F. Ruibal, L. Franco Fraguas and G.A. Galván. 2014. Interpolinización entre cultivos de maíz transgénico y no transgénico comerciales en Uruguay. Fundación Heinrich Böll; Programa Uruguay Sustentable; REDES-AT, Montevideo.

Galvão, A., J. Attie, L. Menezes, J. Cunha, and F. Bisinotto. 2011. Relatório biotecnologia. Céleres, Uberlândia, Brazil.

García G., J.E. 2007. Cultivos genéticamente modificados: las promesas y las buenas intenciones no bastan. Rev. Biol. Trop. 55(2), 347-364. Doi: 10.15517/rbt.v55i2.6015

Gómez, V.A., G.E. Villalba, O.R. Arias, M.B. Ramírez, and E.F. Gaona. 2017. Toxicidad sobre Spodoptera frugiperda (Smith) Lepidoptera: Noctuidae de laproteina Bt expresada en hojas dediferentes eventos de maíz trangénico liberados en Paraguay. Rev. Soc. Entomol. Arg. 76(1-2), 1-10. Doi: 10.25085/rsea.761201

Grupo Semillas. 2007. Aprobado el cultivo de maíz transgénico en Colombia. Una amenaza a la biodiversidad y soberanía alimentaria. Revista Semillas 32/33, 21-31.

Grupo Semillas. 2015. Cultivos de maíz transgénico en Colombia. Impactos sobre la biodiversidad y la soberanía alimentaria de los pueblos. In: https://semillas.org.co/es/noticias/cultivos-de-ma; consulted: August, 2019.

Grupo Semillas. 2016. El maíz transgénico en Colombia, un fracaso anunciado. In: http://semillas.org.co/es/novedades/el-ma-2; consulted: September, 2019.

Gutierrez-Moreno, R., D. Mota-Sanchez, C.A. Blanco, D. Chandrasena, C. Difonzo, J. Conner, G. Head, K. Berman, and J. Wise. 2020. Susceptibility of fall armyworms (Spodoptera frugiperda J.E.) from Mexico and Puerto Rico to Bt proteins. Insects 11(12), 831. Doi: 10.3390/insects11120831

Hallauer, A.R., W.A. Sussell, and K.R. Lamkey. 1988. Corn breeding. pp. 463-564. In: Sprague, G. and W. Dudley (eds.). Corn and corn improvement. American Society of Agronomy; Wiley, Madison, WI. Doi: 10.2134/agronmonogr18.3ed.c8

Hernández-Juárez, A., L.A. Aguirre, E. Cerna, M. Flores, G.A. Frías, J. Landeros, and Y.M. Ochoa. 2019. Abundance of non-target predators in genetically modified corn. Fla Entomol. 102(1), 96-100. Doi: 10.1653/024.102.0115

Hilbeck, A., J. Mcmillan, M. Meier, A. Humbel, J. Schlaepfer-Miller, and M. Trtikova. 2012. A controversy re-visited: Is the coccinellid Adalia bipunctata adversely affected by Bt toxins? Environ. Sci. Eur. 24, 10. Doi: 10.1186/2190-4715-24-10

Horikoshi, R.J., D. Bernardi, O. Bernardi, J.B. Malaquias, D.M. Okuma, L.L. Miraldo, F.S.A. E. Amaral, and C. Omoto. 2016b. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management. Sci. Rep. 6, 34864. Doi: 10.1038/srep34864

Horikoshi, R.J., O. Bernardi, D. Bernardi, D.M. Okuma, J.R. Farias, L.L. Miraldo, F.S.A. Amaral, and C. Omoto. 2016a. Near-Isogenic Cry1F-Resistant strain of Spodoptera frugiperda (Lepidoptera: Noctuidae) to investigate fitness cost associated with resistance in Brazil. J. Econ. Entomol. 109, 854-859. Doi: 10.1093/jee/tov387

Huang, F., J.A. Qureshi, G.P. Head, P. Proce, R. Levy, F. Yang, and Y. Niu. 2016. Frequency of Bacillus thuringiensis Cry1A.105 resistance alleles in field populations of the fall armyworm, Spodoptera frugiperda, in Louisiana and Florida. Crop Prot. 83, 83-89. Doi: 10.1016/j.cropro.2016.01.019

Huang, F., J.A. Qureshi, R.L. Meagher Jr, D.D. Reisig, G.P. Head, D.A. Andow, X. Ni, D. Kerns, G.D. Buntin, Y. Niu, F. Yang, and V. Dangal. 2014. Cry1F resistance in fall armyworm Spodoptera frugiperda:single gene versus pyramided Bt maize. PLoS ONE 9(11), e112958. Doi: 10.1371/journal.pone.0112958

ICA, Instituto Colombiano Agropecuario. 2010. Resolución No. 2894, por medio de la cual se implementa el plan de manejo, bioseguridad y seguimiento para siembras controladas de maíz genéticamente modificado. Bogota.

Index Mundi. 2020. Country facts and statistics. South America, Central America and the Caribian. Sector Agriculture. Corn. In: https: www.indexmundi.com; consulted: February, 2020.

ISAAA, The International Service for the Acquisition of Agri-biotech Applications. 2017. Global status of commercialized Biotech/GM crops in 2017: Biotech Crop Adoption Surges as Economic Benefits Accumate in 22 Years. ISAAA Brief No. 53. Ithaca, NY.

Jaramillo Barrios, C. I., E. Barragán Quijano, and B. Monje Andrade. 2019. Populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) cause significant damage to genetically modified corn crops. Rev. Fac. Nac. Agron. Medellín 72(3), 8953-8962. Doi: 10.15446/rfnam.v72n3.75730

Leite, N.A., S.M. Mendes, O.F. Santos‐Amaya, C.A. Santos, T.P. Teixeira, R.N. Guedes, and E.J. Pereira. 2016. Rapid selection and characterization of Cry1F resistance in a Brazilian strain of fall armyworm. Entomol. Exp. Applic. 158(3), 236-247. Doi: 10.1111/eea.12399

Leite, N., S. Mendes, J. Waquil, and E. Pereira. 2011. O milho Bt no Brasil: a situação e a evolução da resistência de insetos. Série Documentos No. 133. Embrapa Milho e Sorgo, Brasilia.

Lövei, G., D. Andow, and S. Arpaia. 2009. Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies. Environ. Entomol. 38(2), 293-306. Doi: 10.1603/022.038.0201

Lövei, G. and S. Arpaia. 2005. The impact of transgenic plants on natural enemies: a critical review of laboratory studies. Entomol. Exp. Applic. 114(1), 1-14. 10.1111/j.0013-8703.2005.00235.x

Luna Mena, B.M. and J.R. Altamirano Cárdenas. 2015. Maíz transgénico: ¿Beneficio para quién? Rev. Estud. Soc. 23(45), 141-161.

Mason, CH. E., J.K. Sheldon, J. Pesek, H. Bacon, R. Gallusser, G. Radke, and B. Slabaugh. 2008. Assessment of Chrysoperla plorabunda longevity, fecundity, and egg viability when adults are fed transgenic Bt corn pollen. J. Agric. Urban Entomol. 25(4), 265-278. Doi: 10.3954/1523-5475-25.4.265

McCormick. 2020. All the latest data on maize production around the world. In: https://www.mccormick.it/za/all-the-latest-data-on-maize-production-around-the-world/; consulted: June, 2021.

Mejía C., R. A. and I. Zenner de Polanía. 2012. Expresión de la toxina Cry1Ab en maíz transgénico Yieldgard® en los Llanos Orientales de Colombia. Southwest. Entomol. 37(2), 209-223.

Ministerio del Ambiente of Peru. 2016. Moratoria al ingreso de transgénicos -OVM en el Perú. Protegiendo nuestra diversidad biológica y cultural Reporte del estado de la implementación de la Ley no. 29811. Lima.

Monnerat, R., E. Martins, C. Macedo, P. Queiroz, L. Praça, C.M. Soares, H. Moreira, I. Grisi, J Silva, M. Soberon, and A. Bravo. 2015. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins. PLoS ONE 10(4), e0119544. Doi: 10.1371/journal.pone.0119544

Murúa, M.G., M.A. Vera, A. Michel, A.S. Casmuz, J. Fatoretto and G. Gastaminza. 2019. Performance of field-collected Spodoptera frugiperda (Lepidoptera: Noctuidae) strains exposed to different transgenic and refuge maize hybrids in Argentina. J. Insect Sci. 19(6), 1-7. Doi: 10.1093/jisesa/iez110

NAS, National Academies of Science. 2016. Genetically engineered crops: Experiences and prospects. Washington, DC.

Noticias ONIC. 2017. La situación del cultivo de maíz transgénico en Colombia. In: https://www.onic.org.co/canastadesaberes/125-cds/publicaciones/practicas-productivas/2641-la-situacion-del-cultivo-de-maiz-transgenico-en-colombia; consulted: September, 2019.

Omoto, C., O. Bernardi, E. Salmeron, J. Rodrigo, R.J. Sorgatto, P.M. Dourado, A. Crivellari, A. Renato, R.A. Carvalho, A. Willse, S. Martinelli, and G.H. Head. 2016. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag. Sci. 72(9), 1727-1736. Doi: 10.1002/ps.4201

Onofre Nodari, R. 2009. Calidad de los análisis de riesgo e inseguridad de los transgénicos para la salud ambiental y humana. Rev. Peru Med. Exp. Salud Publica 26(1), 74-82.

Pardo Pérez, E., T. Cavadía Martínez, and Y. Herrera Vanegas. 2018. Genetic diversity of creole maize (Zea mays L.) evaluated by microsatellite markers in Puerto Libertador, Cordoba. Rev. UDCA Act. & Div. Cient. 21(2), 359-365. Doi: 10.31910/rudca.v21.n2.2018.981

Permingea T., H. and E. Margarit. 2005. Impacto ambiental de los cultivos genéticamente modificados: el caso de maíz Bt. Rev. Invest. Fac. Cienc Agrar. 5(7), 33-44.

Portilla, M., C.A. Blanco, R. Arias, and Y.-C. Zhu. 2020. Effect of two Bacillus thuringiensis (Bacillales: Bacillaceae) proteins on development of the fall armyworm after seven-day exposure. Southwest. Entomol. 45(2), 389-404. Doi: 10.3958/059.045.0208

Ranum, P., J. P. Pena-Rosas and M. N. Garcia-Casal. 2014. Global maize production, utilization, and consumption. Ann. N.Y. Acad. Sci. 1312, 105-112. Doi: 10.1111/nyas.12396

Resende, D.C., S.M. Mendes, R.C. Marucci, A.C. Silva, M.M. Campanha, and J.M. Waquil. 2016. Does Bt maize cultivation affect the non-target insect community in the agro ecosystem? Rev. Bras. Entomol. 60(1), 82-93. Doi: 10.1016/j.rbe.2015.12.001

Rolim, G.D.S., A. Plata-Rueda, L.C. Martínez, G.T. Ribeiro, J.E. Serrão, and J.C. Zanuncio. 2020. Side effects of Bacillus thuringiensis on the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae). Ecotoxicol. Environ. Saf. 189, 109978. Doi: 10.1016/j.ecoenv.2019.109978

Rossi, D. 2007. Evolución de los cultivares de maíz utilizados en la Argentina. Revista Agromensajes 36, 3-10.

Roush, R.T. 1994. Managing pests and their resistance to Bacillus thuringiensis: Can transgenic crops be better than sprays? Biocontrol Sci. Technol. 4(4), 501-516. Doi: 10.1080/09583159409355364

Sánchez, M.L., J.C. Linares, C. Fernández Herrera, and K.D. Pérez García. 2018. Análisis de la entomofauna benéfica en cultivos de maíz transgénico y convencional, Córdoba-Colombia. Temas Agrarios 23(2), 121-130. Doi: 10.21897/rta.v23i2.1296

Schmidt, J., C. Braun, L. Whitehouse, and A. Hilbeck. 2009. Effects of activated Bt transgene products (Cry1Ab, Cry3Bb) on immature stages of the ladybird Adalia bipunctata in laboratory ecotoxicity testing. Arch. Environ. Con. Tox. 56, 221-228. Doi: 10.1007/s00244-008-9191-9

SENAVE, Servicio Nacional de Calidad y Sanidad Vegetal y de Semillas. 2016. Maíz. Listado de eventos con modificación genética liberados en el país – Paraguay. In: http://web.senave.gov.py:8081/docs/Listado%20de%20eventos%20liberados%20comercialmente%20en%20el%20pais-2019.pdf; consulted: October, 2019.

Solleiro Rebolledo, J.L. and R. Castañón Ibarra (Comps.). 2013. Introducción al ambiente del maíz transgénico. Análisis de ocho casos en Iberoamérica. AgroBio; CambioTec; Mexico, DF.

Souza, C.S., R.C. Marucci, D.R. Chaves, and S.M. Mendes, 2019. Effects of genetically modified plants with Bt Toxins on natural enemies. pp. 489-496. In: Souza, B., L.L. Vázquez, and R.C. Marucci (eds.). Natural enemies of insect pests in neotropical agroecosystems. Springer, Cham, Germany. Doi: 10.1007/978-3-030-24733-1_39

Spagnol, D., R.V. Castilhos, R.A. Pasini, A.D. Grützmacher, and A.P.S.A. Rosa. 2020. Bt maize genotypes do not harm Trichogramma pretiosum when exposed to vegetative and reproductive structures. Biocontrol Sci. Technol. 30(5), 480-484. Doi: 10.1080/09583157.2020.1728230

Storer, N.P., J.M. Babcock, M. Schlenz, T. Meade, G.D. Thompson, J.W. Bing, and R.M. Huckaba. 2010. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031-1038. Doi: 10.1603/ec10040

Storer, N.P., M.E. Kubiszak, J.E. King, G.D. Thompson, and A.C. Santos. 2012. Status of resistance to Bt maize in Spodoptera frugiperda: Lessons from Puerto Rico. J. Invertebrate Pathol. 110(3), 294-300. Doi: 10.1016/j.jip.2012.04.007

Téllez, P., C. Ayra, I. Morán-Bertot, L. Rodríguez-Cabrera, A.E. Sosa, O. Oliva, M. Ponce, A. Riverón, D. Hernández, and C. Rodríguez de la Noval. 2016. New knowledge on insect-resistance management for transgenic Bt corn. Biotecnol. Aplic. 33, 1511-1513.

Turrent Fernández, A., J.A. Serratos Hernández, H. Mejía Andrade, and A. Espinosa Calderón. 2009. Liberación comercial de maíz transgénico y acumulación de transgenes en razas de maíz mexicano. Rev. Fitot. Mex. 32(4), 257-263. Doi: 10.35196/rfm.2009.4.257-263

Trumper, E.V. 2014. Resistencia de insectos a cultivos transgénicos con propiedades insecticidas. Teoría, estado del arte y desafíos para la República Argentina. Agriscientia 31(2), 109-126. Doi: 10.31047/1668.298x.v31.n2.16538

Vassallo, C.N., F. Figueroa Bunge, A.M. Signorini, P. Valverde-Garcia, D. Rule, and J. Babcock. 2019. Monitoring the evolution of resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) to the Cry1F protein in Argentina. J. Econ. Entomol. 112(4), 1838-1844. Doi: 10.1093/jee/toz076

Vélez, A.M., T.A. Spencer, A.P. Alves, A.L.B. Crespo, and B.D. Siegfried. 2014. Fitness costs of Cry1F resistance in fall armyworm, Spodoptera frugiperda. J. Appl. Entomol. 138, 315-325. Doi: https://doi.org/10.1111/jen.12092

World of Corn. 2020. World corn production 2019-2020. In: http://www.worldofcorn.com/#world-corn-production; consulted: February, 2010.

Zenner de Polanía, I., H.A. Arévalo Maldonado, R. Mejía Cruz, and J.I. Díaz Sánchez. 2009. Spodoptera frugiperda: respuesta de distintas poblaciones a la toxina Cry1Ab. Rev. Colomb. Entomol. 35(1), 34-41.

Zenner de Polanía, I. and G. Álvarez Alcaráz. 2008. Análisis del efecto de dos cultivares transgénicos, algodón y maíz, sobre la principal fauna benéfica en el Espinal (Tolima). Rev. UDCA Act. & Div. Cient. 11(1), 133-142. Doi: 10.31910/rudca.v11.n1.2008.610

Zhu, Y.C., C.A. Blanco, M. Portilla, J. Adamczyk, and R. Luttrell. 2015. Evidence of multiple/cross resistance to Bt and organophosphate insecticide in Puerto Rico population of the fall armyworm, Spodoptera frugiperda. Pestic. Biochem. Physiol. 122, 15-21. 10.1016/j.pestbp.2015.01.007

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 1 2 3 

También puede {advancedSearchLink} para este artículo.