Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Distribución temporal de Botrytis cinerea y su relación con la producción de fresas (Fragaria × ananassa Duch., variedad Monterrey) sometidas a tratamientos biológicos con antagonistas microbianos

Botrytis fruit rot in strawberry. Photo: M. Cano

Resumen

En la Sabana de Bogotá (Colombia), el cultivo de fresa (Fragaria × ananassa Duch.) se establece desde 2.000 hasta 2.800 msnm. En esta condición la humedad relativa generalmente es mayor al 70% y la temperatura fluctúa entre 14 y 22°C, características climáticas propicias para el desarrollo de enfermedades fungosas. El moho gris (Botrytis cinerea) es la enfermedad de mayor relevancia en esta condición y las pérdidas de fruta pueden superar el 40% de la producción. El propósito de esta investigación fue analizar el efecto del uso de antagonistas microbianos, en la regulación biológica de B. cinerea y su relación con la producción. Se inocularon y co-inocularon (combinación) plantas de Fragaria × ananassa Duch. cv. Monterrey en el momento del trasplante, con consorcios microbianos conformados por hongos micorrízicos, bacterias antagonistas y Trichoderma harzianum. Se evaluó la incidencia temporal de B. cinerea y la producción de frutos sanos a los 90, 180 y 270 días después del trasplante, observando un incremento temporal en la incidencia de la enfermedad desde el 6,59 al 23,08% para las plantas control, valores superiores a los observados en los tratamientos biológicos. El tratamiento con micorrizas presentó los valores más bajos de incidencia de B. cinerea, con valores desde 0,89 a 13,78% y el mejor tratamiento en la producción de frutos. La inoculación y co-inoculación son una alternativa para disminuir la incidencia de la enfermedad y aumentar la producción de frutos.

Palabras clave

Moho gris, Regulación biológica, Hongos micorrízicos, Bacterias antagonistas, Trichoderma sp.

PDF (English)

Citas

  1. Afrin, S., M. Gasparrini, T.Y. Forbes-Hernandez, P. Reboredo-Rodriguez, B. Mezzetti, B., A. Varela-López, F. Giampieri, and M. Battino. 2016. Promising health benefits of the strawberry: a focus on clinical studies. J. Agric. Food Chem. 64, 4435–4449. https://doi.org/10.1021/acs.jafc.6b00857
  2. Aqueveque, P., C.L. Cespedes, J. Becerra, M. Aranda, and O. Sterner. 2017. Antifungal activities of secondary metabolites isolated from liquid fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (grey mould agent). Food Chem. Toxicol. 109(Part 2), 1048-1054. Doi: https://doi.org/10.1016/j.fct.2017.05.036
  3. Bell, J.C., S.A. Bound, and M. Buntain. 2022. Biostimulants in agricultural and horticultural production. In: I. Warrington (ed.). Horticultural reviews. Wiley, Hoboken NJ. https://doi.org/10.1002/9781119851981.ch2
  4. Berruti, A., E. Lumini, R. Balestrini, and V. Bianciotto. 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 6(1), 1559. Doi: https://doi.org/10.3389/fmicb.2015.01559
  5. Bona, E., S. Cantamessa, N. Massa, P. Manassero, F. Marsano, A. Copetta, G. Lingua, G. D’Agostino, E. Gamalero, and G. Berta. 2017. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27(1), 1-11. Doi: https://doi.org/10.1007/s00572-016-0727-y
  6. Calvo, H., P. Marco, D. Blanco, R. Oria, and M.E. Venturini. 2017. Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiol. 63, 101-110. Doi: https://doi.org/10.1016/j.fm.2016.11.004
  7. Campos-Requena, V.H., B.L. Rivasa, M.A. Péreza, C.R. Figueroa, N.E. Figueroa, and E.A. Sanfuentes. 2017. Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries. In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biol. Technol. 129, 29-36. Doi: https://doi.org/10.1016/j.postharvbio.2017.03.005
  8. Cano, M.A. 2013. Estrategias biológicas para el manejo de enfermedades en el cultivo de fresa (Fragaria spp.). Rev. Colomb. Cienc. Hortic. 7(2), 263-276. Doi: https://doi.org/10.17584/rcch.2013v7i2.2240
  9. Castaño, Z.J. 2002. Principios básicos de fitoepidemiología. Universidad de Caldas, Manizales, Colombia.
  10. Chen, C., X. Zhang, X. Wei, Y. Zhu, W. Chen, and Y. Han. 2022. Postharvest biological control of Botrytis cinerea and the mechanisms underlying the induction of disease resistance in grapes by Lactobacillus plantarum CM-3. Biol. Control 172 104982. Doi: https://doi.org/10.1016/j.biocontrol.2022.104982
  11. Colombia IDEAM, Instituto de Hidrología, Meteorología y Estudios Ambientales Colombia. 2016. Tiempo y clima. In: https://www.ideam.gov.co/web/tiempo-y-clima/clima; consulted: September, 2018.
  12. Da Silva, A.R., G. Malafaia, and I.P.P. Menezes. 2017. Biotools-package: Tools for biometry and applied statistics in agricultural science. In: https://arsilva87.github.io/biotools/; consulted, July, 2022.
  13. De Tender, C., B. Vandecasteele, B. Verstraeten, S. Ommeslag, T. Kyndt, and J. Debode. 2021. Biochar-enhanced resistance to Botrytis cinerea in strawberry fruits (but not leaves) is associated with changes in the rhizosphere microbiome. Front. Plant Sci. 12, 700479. Doi: https://doi.org/10.3389/fpls.2021.700479
  14. Dominí, A. 2012. Revisión bibliográfica mejora genética de la fresa (Fragaria ananassa Duch.). Cult. Trop. 33(3), 34-41.
  15. FRAC, Fungicide Resistance Action Committee. 2020. List of first confirmed cases of plant pathogenic organisms resistant to disease control agents. In: https://www.frac.info/; consulted: January 2023.
  16. Korkmaz, S., D. Goksuluk, and G. Zararsiz. 2015. MVN: multivariate normality tests. R package v 4. In: https://cran.r-project.org/web/packages/MVN/vignettes/MVN.html; consulted, July, 2022.
  17. Liang, K.Y. and S.L. Zeger. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73(1), 13-22.
  18. Lovaisa, N.C. M.F. Guerrero-Molina, P.G. Delaporte-Quintana, M.D. Alderete, A.L. Ragout, S.M. Salazar, and R.O. Pedraza. 2017. Strawberry monocropping: Impacts on fruit yield and soil Microorganisms. J. Soil Sci. Plant Nutr. 17(4), 868-883. Doi: http://doi.org/10.4067/S0718-95162017000400003
  19. Maurya, R., S. Verma, and I. Bahadur. 2019. Advances in the application of plant growth-promoting rhizobacteria in horticulture. pp. 67-76. In: Kumar, A. and V. Meena (eds.). Plant growth promoting rhizobacteria for agricultural sustainability. Springer, Singapore. Doi: https://doi.org/10.1007/978-981-13-7553-8_3
  20. Merchán-Gaitán, J.B., R.L. Ferrucho, and J.G. Álvarez-Herrera. 2014. Efecto de dos cepas de Trichoderma en el control de Botrytis cinerea y la calidad del fruto en fresa (Fragaria sp.). Rev. Colomb. Cienc. Hortic. 8(1), 44-56. Doi: https://doi.org/10.17584/rcch.2014v8i1.2799
  21. Montgomery, D.C., E.A. Peck, and G.G. Vining. 2012. Introduction to linear regression analysis. Vol. 821. John Wiley & Sons, Hoboken, NJ.
  22. Poveda, J., M. Barquero, and F. González-Andrés. 2020. Insight into the microbiological control strategies against Botrytis cinerea using systemic plant resistance activation. Agronomy 10(11), 1822. Doi: https://doi.org/10.3390/agronomy10111822
  23. Orozco-Mosqueda, M.C., A. Kumar, A.E. Fadiji, O.O. Babalola, G. Puopolo, and G. Santoyo. 2023. Agroecological management of the grey mould fungus Botrytis cinerea by plant growth-promoting bacteria. Plants 12, 637. Doi: https://doi.org/10.3390/plants12030637
  24. Ruiz, R. and W. Piedrahíta. 2012. Fresa. pp. 474-495. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
  25. Sangwan, S. and R. Prasanna. 2022. Mycorrhizae helper bacteria: Unlocking their potential as bioenhancers of plant–arbuscular mycorrhizal fungal associations. Microb. Ecol. 84, 1-10. Doi: https://doi.org/10.1007/s00248-021-01831-7
  26. Santra, H.K. and D. Banerjee. 2020. Natural products as fungicide and their role in crop protection. pp. 131-219. In: Singh, J. and A. Yadav (eds.). Natural bioactive products in sustainable agriculture. Springer, Singapore. Doi: https://doi.org/10.1007/978-981-15-3024-1_9
  27. Siah, A., M. Magnin-Robert, B. Randoux, C. Choma, C. Rivière, P. Halama, and P. Reignault. 2018. Natural agents inducing plant resistance against pests and diseases. pp. 121-159. In: Mérillon, J.M. and C. Riviere (eds.). Natural antimicrobial agents. Sustainable development and biodiversity. Vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-67045-4_6
  28. Silva, L.I., I.P. Oliveira, E.C. Jesus, M.C. Pereira, M. Pasqual, R.C. Araújo, and J. Dória. 2022. Fertilizer of the future: Beneficial bacteria promote strawberry growth and yield and may reduce the need for chemical fertilizer. Agronomy 12, 2465. Doi: https://doi.org/10.3390/agronomy12102465
  29. Simko, I. and H.-P. Piepho. 2012. The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology 102, 381-389. Doi: http://doi.org/10.1094/PHYTO-07-11-0216
  30. Stokes, M.E., C.S. Davis, and G.G. Koch. 2012. Categorical data analysis using SAS®. 3rd ed. SAS Institute, Cary, NC.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 > >> 

También puede {advancedSearchLink} para este artículo.