Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Aplicación conjunta de sustancias húmicas y PGPR inoculadas, y co-inoculadas en plantas de Phaseolus lunatus (L.) yLeucaena leucocephala (Lam.) de Wit

Lima bean greenhouse experiment. Photo: J.G. Cubillos-Hinojosa

Resumen

El objetivo de esta investigación fue evaluar el efecto de la inoculación y co-inoculación de rizobios y Azospirillum brasilense combinados con sustancias húmicas (SH) en la promoción del crecimiento de Phaseolus lunatus (frijol lima) y Leucaena leucocephala (leucaena). Para ello se realizaron experimentos en invernadero con el cultivo de cada especie vegetal. Se siguió un diseño experimental de bloques completos al azar con cinco repeticiones. Se sembraron las semillas de plantas y luego se inocularon con rizobios y se coinocularon con A. brasilense. Posteriormente se agregaron SH con la dosis recomendada por el fabricante. En los experimentos con ambas plantas se utilizaron tratamientos control con adición de nitrógeno (N) con o sin SH. Después de 45 días, se determinó la masa seca de la parte aérea (MSPA), la masa seca de la raíz (MSR), el N acumulado en la parte aérea (Nac) y el índice de eficiencia relativa (IER). Además, se determinó la masa de nódulos secos (MNS) y en las plantas de leucaena el número de nódulos (NN). Los resultados mostraron que en las plantas de frijol lima y leucaena hubo un mayor aumento de MSPA, MSR y Nac en los tratamientos que recibieron SH y co-inoculación con rizobios y A. brasilense que en los tratamientos que fueron inoculados solo con rizobios y SH, y en tratamientos que recibieron N y SH en comparación con la adición de N y la inoculación aislada de rizobios. La aplicación combinada de SH y rizobios en co-inoculación con A. brasilense tuvo un mayor efecto en el aumento de MNS en frijol lima y NN en leucaena, seguido de los tratamientos donde solo se agregaron rizobios con SH. Estos resultados indican la existencia de una interacción potencial del uso de SH con la co-inoculación de rizobios y A. brasilense, lo que resulta prometedor para la producción de cultivos agrícolas sostenibles.

Palabras clave

Sustancias húmicas, Co-inoculación, Rizobios, Azospirillum, Bioestimulantes, Sostenibilidad

XML (English) PDF (English)

Citas

  1. Aguirre, E., D. Leménager, E. Bacaicoa, M. Fuentes, R. Baigorri, A.M. Zamarreño, and J.M. García-Mina. 2009. The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants. Plant Physiol. Biochem. 47(3), 215-223. Doi: https://doi.org/10.1016/j.plaphy.2008.11.013
  2. Aguirre-Medina, J.F., A. Ley-De Coss, M.E. Velazco-Zebadúa, and J.F. Aguirre-Cadena. 2015. Crecimiento de Leucaena leucocephala (Lam.) De Wit inoculada con hongo micorrízico y bacteria fijadora de nitrógeno en vivero. Quehacer Científico en Chiapas 10(1), 15-22.
  3. Ahmad, M., Z.A. Zahir, H.N. Asghar, and M. Arshad. 2012. The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Ann. Microbiol. 62, 1321-1330. Doi: https://doi.org/10.1007/s13213-011-0380-9
  4. Antunes, J.E.L., R.L.F. Gomes, A.C.A. Lopes, A.S.F. Araújo, M.C.C.P. Lyra, and M.V.B. Figueiredo. 2011. Eficiência simbiótica de isolados de rizóbio noduladores de feijão-fava (Phaseolus lunatus L.). Rev. Bras. Ciênc. Solo 35(3), 751-757. Doi: https://doi.org/10.1590/S0100-06832011000300011
  5. Araujo, A.S.F., A.C.A. Lopes, R.L.F. Gomes, J.E.A. Beserra Junior, J.E.L. Antunes, M.C.C.P. Lyra, and M.V.B. Figueiredo. 2015. Diversity of native rhizobia-nodulating Phaseolus lunatus in Brazil. Legume Res. 38(5), 653-657. Doi: https://doi.org/10.18805/lr.v38i5.5946
  6. Arshad, M. and W.T. Frankenberger Jr. 1992. Microbial biosynthesis of ethylene and its influence on plant growth. pp. 69-111. In: Marshall, K.C. (ed.). Advances in microbial ecology. Advances in microbial ecology. Vol. 12. Springer, Boston, MA. Doi: https://doi.org/10.1007/978-1-4684-7609-5_2
  7. Aydin, A., C. Kant, and M. Turan. 2012. Humic acid application alleviates salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr. J. Agric. Res. 7, 1073-1086. Doi: https://doi.org/10.5897/AJAR10.274
  8. Barreto, M.L.J., D.M. Lima Junior, J.P.F. Oliveira, A.H.N. Rangel, and E.M. Aguiar. 2010. Utilização da leucena (Leucaena leucocephala) na alimentação ruminantes. Rev. Verde 1, 7-16.
  9. Brockwell, J., F.W. Hely, and C.A. Neal-Smith. 1966. Some symbiotic characteristics of rhizobia responsible for spontaneous, effective field nodulation of Lotus hispidus. Aust. J. Exp. Agric. Anim. Husb. 6(23), 365-370. Doi: https://doi.org/10.1071/EA9660365
  10. Bueno, L. and J.C. Camargo. 2015. Nitrógeno edáfico y nodulación de Leucaena leucocephala (Lam.) de Wit en sistemas silvopastoriles. Acta Agron. 64(4), 349-354. Doi: https://doi.org/10.15446/acag.v64n4.45362
  11. Burdman, S., J. Kigel, and Y. Okon. 1997. Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L). Soil Biol. Biochem. 29(5-6), 923-929. Doi: https://doi.org/10.1016/S0038-0717(96)00222-2
  12. Canellas, L.P., D.M. Balmori, L.O. Médici, N.O. Aguiar, E. Campostrini, R.C.C. Rosa, A.R. Façanha, and F.L. Olivares. 2013. A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant Soil 366, 119-132. Doi: https://doi.org/10.1007/s11104-012-1382-5
  13. Canellas, L.P., D.J. Dantas, N.O. Aguiar, L.E.P. Peres, A. Zsögön, F.L. Olivares, L.B. Dobbss, A.R. Façanha, A. Nebbioso, and A. Piccolo. 2011. Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. Annal. Appl. Biol. 159(2), 202-211. Doi: https://doi.org/10.1111/j.1744-7348.2011.00487.x
  14. Canellas, L.P. and A.R. Façanha. 2004. Chemical natures of soil humified fractions and their bioactivity. Pesq. Agropec. Bras. 39(3), 233-240. Doi: https://doi.org/10.1590/S0100-204X2004000300005
  15. Canellas, L.P. and F.L. Olivares. 2014. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric. 1, 3. Doi: https://doi.org/10.1186/2196-5641-1-3
  16. Canellas, L.P., G.A. Santos, A.A. Moraes, V.M. Rumjanek, and F.L. Olivares. 2000. Avaliação de características de ácidos húmicos de resíduos de origem urbana: I. métodos espectroscópicos (UV-Vis, IV, RMN 13C-CP/MAS) e microscopia eletrônica de varredura. Rev. Bras. Ciênc. Solo 24(4), 741-750. Doi: https://doi.org/10.1590/S0100-06832000000400006
  17. Canellas, L.P., S.F. Silva, D.C. Olk, and F.L. Olivares. 2015. Foliar application of of plant growth-promoting bacteria and humic acid increase maize yields. J. Food Agric. Environ. 13(1), 146-153.
  18. Chassapis, K. and M. Roulia. 2008. Evaluation of low-rank coals as raw material for Fe and Ca organomineral fertilizer using a new EDXRF method. Int. J. Coal Geol. 75(3), 185-188. Doi: https://doi.org/10.1016/j.coal.2008.04.006
  19. Chen, Y. and T. Aviad. 1990. Effects of humic substances on plant growth. pp. 161-186. In: Maccarthy, P., C.E. Clapp, R.L. Malcolm, and P.R. Bloom (eds.). Humic substances in soils and crop science: selected readings. Soil Science Society of America, Madison, WI.
  20. Chen, Y., C.E. Clapp, and H. Magen. 2004. Mechanisms of plant growth stimulation by humic substances: the role of organo-iron complexes. Soil Sci. Plant Nutr. 50(7), 1089-1095. Doi: https://doi.org/10.1080/00380768.2004.10408579
  21. Costa, J.N.M.N. and G. Durigan. 2010. Leucaena leucocephala (Lam.) de Wit (Fabaceae): invasora ou ruderal? Rev. Árvore 34(5), 825-833. Doi: https://doi.org/10.1590/S0100-67622010000500008
  22. Cubillos-Hinojosa, J.G., F.S. Araujo, and E.L.S. Sá. 2020. Rizóbios nativos eficientes en la fijación de nitrógeno en Leucaena leucocephala en Rio Grande do Sul, Brasil. Biotecnol. Sector Agropec. Agroind. 19(1), 128-138. Doi: https://doi.org/10.18684/bsaa.v19.n1.2021.1482
  23. Cubillos-Hinojosa, J.G., P.E. Milian, J.L. Hernández, and A.J. Peralta. 2019. Biological fixation of nitrogen by native isolates of Rhizobium sp. symbionts of Leucaena leucocephala (Lam.) De Wit. Acta Agron. 68(2), 75-83. Doi: https://doi.org/10.15446/acag.v68n2.69322
  24. Cubillos-Hinojosa, J.G., E.L.S. Sá, and F.A. Silva. 2021. Efficiency of rhizobia selection in Rio Grande do Sul, Brazil using biological nitrogen fixation in Phaseolus lunatus. Afr. J. Agric. Res. 17(2), 229-237. Doi: https://doi.org/10.5897/AJAR2020.15066
  25. Cubillos-Hinojosa, J.G., A.P. Tofiño, E.C. Suarez-Fragozo, L. Aguirre, and L.F. Gómez. 2023. Selección de rizobios eficientes en líneas de frijol común (Phaseolus vulgaris L.) tolerantes a sequía. Biotecnol. Sector Agropec. Agroind. 21(2), 32-49. Doi: https://doi.org/10.18684/rbsaa.v21.n2.2023.2188
  26. Cubillos-Hinojosa, J.G., N.O. Valero, and L.M. Melgarejo. 2015. Assessment of a low rank coal inoculated with coal solubilizing bacteria as an organic amendment for a saline-sodic soil. Chem. Biol. Technol. Agric. 2, 21. Doi: https://doi.org/10.1186/s40538-015-0048-y
  27. Dobbss, L.B., L.P. Canellas, F.L. Olivares, N.O. Aguiar, L.E.P. Peres, M. Azevedo, R. Spaccini, A. Piccolo, and A.R. Façanha. 2010. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. J. Agric. Food Chem. 58(6), 3681-3688. Doi: https://doi.org/10.1021/jf904385c
  28. Duran, D., L. Rey, J. Mayo, D. Zúñiga-Dávila, J. Imperial, T. Ruiz-Argüeso, E. Martínez-Romero, and E. Ormeño-Orrillo. 2014. Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of lima bean (Phaseolus lunatus L.) in Peru. Int. J. Syst. Evol. Microbiol. 64(Pt 6), 2072-2078. Doi: https://doi.org/10.1099/ijs.0.060426-0
  29. El-Ghamry, A.M., K.M.A. El-Hai, and K.M. Ghoneem. 2009. Amino and humic acids promote growth, yield and disease resistance of faba bean cultivated in clayey soil. Aust. J. Basic Appl. Sci. 3(2), 731-739.
  30. Ekin, Z. 2019. Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability 11(12), 3417. Doi: https://doi.org/10.3390/su11123417
  31. Façanha, A.R., A.L.O. Façanha, F.L. Olivares, F. Guridi, G.A. Santos, A.C.X. Velloso, V.M. Rumjanek, F. Brasil, J. Schripsema, R. Braz-Filho, M.A. Oliveira, and L.P. Canellas. 2002. Bioatividade de ácidos húmicos: efeitos sobre o desenvolvimento radicular e sobre a bomba de prótons da membrana plasmática. Pesq. Agropec. Bras. 37(9), 1301-1310. Doi: https://doi.org/10.1590/S0100-204X2002000900014
  32. Franco, M.C., S.T.A. Cassini, V.R. Oliveira, C. Vieira, and S.M. Tsai. 2002. Nodulação em cultivares de feijão dos conjuntos gênicos andino e meso-americano. Pesq. Agropec. Bras. 37(8), 1145-1150. Doi: https://doi.org/10.1590/S0100-204X2002000800012
  33. Giannouli, A., S. Kalaitzidis, G. Siavalas, A. Chatziapostolou, K. Christanis, S. Papazisimou, C. Papanicolaou, and A. Foscolos. 2009. Evaluation of Greek low-rank coals as potential raw material for the production of soil amendments and organic fertilizers. Int. J. Coal Geol. 77(3-4), 383-393. Doi: https://doi.org/10.1016/j.coal.2008.07.008
  34. Hoagland, D.R. and D.I. Arnon. 1950. The water-culture method of growing plants without soil. Circular 347. University of California, Berkeley, CA.
  35. Hungria, M., D.S. Andrade, L.M.O. Chueire, A. Probanza, F.J. Guttierrez-Mañero, and M. Megías. 2000. Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol. Biochem. 32(11-12), 1515-1528. Doi: https://doi.org/10.1016/S0038-0717(00)00063-8
  36. Hungria, M., R.J. Campo, and I.C. Mendes. 2003. Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol. Fertil. Soils 39, 88-93. Doi: https://doi.org/10.1007/s00374-003-0682-6
  37. Hungria, M., M.A. Nogueira, and R.S. Araujo. 2013. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol. Fertil. Soils 49(7), 791-801. Doi: https://doi.org/10.1007/s00374-012-0771-5
  38. Iniguez, A.L., Y. Dong, and E.W. Triplett. 2004. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol. Plant-Microbe Interact. 17(10), 1078-1085. Doi: https://doi.org/10.1094/MPMI.2004.17.10.1078
  39. Kant, R., R. Bishist, and M. Kumar. 2019. Effect of supplementation of Leucaena leucocephala (Lam.) de Wit (Leucaena) leaves on growth profile of crossbred calves. Int. J. Livest. Res. 10. Doi: https://doi.org/10.5455/ijlr.20181212024424
  40. Kloepper, J.W. and M.N. Schroth. 1978. Plant growth promoting rhizobacteria on radishes. pp. 879-882. In: Proc. 5th International Conference on Plant Pathogenic Bacteria. INRA, Tours, France.
  41. Kumar, R. and R. Chandra. 2008. Influence of PGPR and PSB on Rhizobium leguminosarum Bv. viciae strain competition and symbiotic performance in lentil. World J. Agric. Sci. 4(3) 297-301.
  42. Melo, A.P., F.L. Olivares, L.O. Médici, A. Torres-Neto, L.B. Dobbss, and L.P. Canellas 2017. Mixed rhizobia and Herbaspirillum seropedicae inoculations with humic acid-like substances improve water-stress recovery in common beans. Chem. Biol. Technol. Agric. 4, 6. Doi. https://doi.org/10.1186/s40538-017-0090-z
  43. Montañez, A., C. Abreu, P.R. Gill, G. Hardarson, and M. Sicardi. 2009. Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope-dilution and identification of associated culturable diazotrophs. Biol. Fertil. Soils 45(3), 253-263. Doi: https://doi.org/10.1007/s00374-008-0322-2
  44. Murgas, E. and A. Falla. 2016. Influencia de ácidos húmicos y bacterias diazotróficas sobre la germinación de las semillas y crecimiento temprano de plantas forrajeras. MSc thesis. Universidad Popular del Cesar, Valledupar, Colombia.
  45. Murgueitio, E., F. Uribe, C. Molina, E. Molina, W. Galindo, J. Chará, M. Flores, C. Giraldo, C. Cuartas, J. Naranjo, L. Solarte, and J. González. 2016. Establecimiento del SSPi con leucaena asociado a pastos seleccionados. pp. 55-106. Murgueitio, E., W. Galindo, J. Chará, and F. Uribe (eds.). Establecimiento y manejo de sistemas silvopastoriles intensivos con Leucaena. CIPAV, Santiago de Cali, Colombia.
  46. Muscolo, A., M. Sidari, and S. Nardi. 2013. Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. J. Geochem. Explor. 129, 57-63. Doi: https://doi.org/10.1016/j.gexplo.2012.10.012
  47. Nardi, S., M. Tosoni, D. Pizzeghello, M.R. Provenzano, A. Cilenti, A. Sturaro, R. Rella, and A. Vianello. 2005. Chemical characteristics and biological activity of organic substances extracted from soils by root exudates. Soil Sci. Soc. Am. J. 69(6), 2012-2019. Doi: https://doi.org/10.2136/sssaj2004.0401
  48. Nicodemo, M.L.F., A.R. Garcia, V. Porfirio-da-Silva, and D.S.C. Paciullo. 2018. Desempenho, saúde e conforto animal em sistemas silvipastoris no Brasil. Documentos 129 Embrapa, São Carlos, SP.
  49. Ormeño, E., R. Torres, J. Mayo, R. Rivas, A. Peix, E. Velázquez, and D. Zúñiga. 2007. Phaseolus lunatus is nodulated by a phosphate solubilizing strain of Sinorhizobium meliloti in a Peruvian soil. pp. 143-147. In: Velázquez, E.l. and C. Rodríguez-Barrueco (eds.). 1st International Meeting on Microbial Phosphate Solubilization. Developments in Plant and Soil Sciences. Springer, Dordrecht, The Netherlands. Doi: https://doi.org/10.1007/978-1-4020-5765-6_21
  50. Ormeño-Orrillo, E., L. Rey, D. Durán, C.A. Canchaya, M.A. Rogel, D. Zúñiga-Dávila, J. Imperial, T. Ruiz-Argüeso, and E. Martínez-Romero. 2017. Draft genome sequence of Bradyrhizobium paxllaeri LMTR 21T isolated from Lima bean (Phaseolus lunatus) in Peru. Genom. Data 13, 38-40. Doi: https://doi.org/10.1016/j.gdata.2017.06.008
  51. Pieterse, C.M., C. Zamioudis, R.L. Berendsen, D.M. Weller, S.C. Van Wees, and P.A. Bakker. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347-375. Doi: https://doi.org/10.1146/annurev-phyto-082712-102340
  52. Pinton, R., Z. Varanini, G. Vizzotto, and A. Maggioni. 1992. Soil humic substances affect transport properties of tonoplast vesicles isolated from oat roots. Plant Soil 142(2), 203-210. Doi: https://doi.org/10.1007/BF00010966
  53. Rodda, M.R.C., L.P. Canellas, A.R. Façanha, D.B. Zandonadi, J.G.M. Guerra, D.L. Almeida, and G.A. Santos. 2006. Estímulo no crescimento e na hidrólise de ATP em raízes de alface tratadas com humatos de vermicomposto. I - efeito da concentração. Rev. Bras. Ciênc. Solo 30(4), 649-656. Doi: https://doi.org/10.1590/S0100-06832006000400005
  54. Rosa, C.M., R.M.V. Castilhos, L.C. Vahl, D.D. Castilhos, L.F.S. Pinto, E.S. Oliveira, and O.A. Leal. 2009. Efeito de substâncias húmicas na cinética de absorção de potássio, crescimento de plantas e concentração de nutrientes em Phaseolus vulgaris L. Rev. Bras. Ciênc. Solo 33(4), 959-967. https://doi.org/10.1590/S0100-06832009000400020
  55. Santos, J.O., J.E.L. Antunes, A.S.F. Araújo, M.C.C.P. Lyra, R.L.F. Gomes, A.C.A. Lopes, and M.V.B. Figueiredo. 2011. Genetic diversity among native isolates of rhizobia from Phaseolus lunatus. Ann. Microbiol. 61(3), 437-444. Doi: https://doi.org/10.1007/s13213-010-0156-7
  56. Santos, J.O., A.S.F. Araújo, R.L.F. Gomes, Â.C.A. Lopes, and M.V.B., Figueiredo. 2009. Ontogenia da nodulação em feijão-fava (Phaseolus lunatus). Rev. Bras. Cienc. Agrar. 4(4), 426-429. Doi: https://doi.org/10.5039/agraria.v4i4a9
  57. Sarruge, J.R. 1975. Soluções nutritivas. Summa Phytopathol. 1(3), 231-234.
  58. Scher, F.M. and R. Baker. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72, 1567-1573. Doi: https://doi.org/10.1094/Phyto-72-1567
  59. Senesi, N., C. Plaza, G. Brunetti, and A. Polo. 2007. A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biol. Biochem. 39(6), 1244-1262. Doi: https://doi.org/10.1016/j.soilbio.2006.12.002
  60. Servín-Garcidueñas, L.E., A. Zayas-Del Moral, E. Ormeño-Orrillo, M.A. Rogel, A. Delgado-Salinas, F. Sánchez, and E. Martínez-Romero. 2014. Symbiont shift towards Rhizobium nodulation in a group of phylogenetically related Phaseolus species. Mol. Phylogenet. Evol. 79, 1-11. Doi: https://doi.org/10.1016/j.ympev.2014.06.006
  61. Sessitsch, A., J.G. Howieson, X. Perret, H. Antoun, and E. Martínez-Romero. 2002. Advances in rhizobium research. Crit. Rev. Plant Sci. 21(4), 323-378. Doi: https://doi.org/10.1080/0735-260291044278
  62. Shah, Z.H., H.M. Rehman, T. Akhtar, H. Alsamadany, B.T. Hamooh, T. Mujtaba, I. Daur, Y. Al Zahrani, H.A.S. Alzahrani, S. Ali, S.H. Yang, and G. Chung. 2018. Humic substances: determining potential molecular regulatory processes in plants. Front. Plant Sci. 9, 263. Doi: https://doi.org/10.3389/fpls.2018.00263
  63. Silva, R.M., A. Jablonski, L. Siewerdt, and P. Silveira Júnior. 2000. Desenvolvimento radicular e produção de aveia preta até o estágio de grão pastoso, cultivada em solução nutritiva completa com adição de substâncias húmicas. Rev. Bras. Agrociência 1, 53-58.
  64. Silveira, J.A.G., J.C.S. Matos, V.M. Ceccato, A.H. Sampaio, and R.C.L. Costa. 1998. Induction of reductase nitrate activity and nitrogen fixation in two Phaseolus species in relation to exogenous nitrate level. Physiol. Mol. Biol. Plant. 4, 81-188.
  65. Spaccini, R., V. Cozzolino, V. Di Meo, D. Savy, M. Drosos, and A. Piccolo. 2019. Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery. Sci. Total Environ. 646, 792-800. Doi: https://doi.org/10.1016/j.scitotenv.2018.07.334
  66. Sturz, A.V., B.R. Christie, and J. Nowak. 2000. Bacterial endophytes: Potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19(1), 1-30. Doi: https://doi.org/10.1080/07352680091139169
  67. Tedesco, M.J., C. Gianello, C.A. Bissani, H. Bohnem, and S.J. Volkweiss. 1995. Análises de solo, plantas e outros materiais. 2nd ed. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
  68. Tilba, V.A. and V.T. Sinegovskaya. 2012. Role of symbiotic nitrogen fixation in increasing photosynthetic productivity of soybean. Russ. Agric. Sci. 38, 361-363. Doi: https://doi.org/10.3103/S1068367412050199
  69. Tittonell, P. 2014. Ecological intensification of agriculture - sustainable by nature. Curr. Opin. Environ. Sustain. 8, 53-61. Doi: https://doi.org/10.1016/j.cosust.2014.08.006
  70. Trevisan, S., A. Botton, S. Vaccaro, A. Vezzaro, S. Quaggiotti, and S. Nardi. 2011. Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environ. Exp. Bot. 74, 45-55. Doi: https://doi.org/10.1016/j.envexpbot.2011.04.017
  71. Trevisan, S., O. Francioso, S. Quaggiotti, and S. Nardi. 2010. Humic substances biological activity at the plant-soil interface. From environmental aspects to molecular factors. Plant Signal. Behav. 5, 635-643. Doi. https://doi.org/10.4161/psb.5.6.11211
  72. Vaughan, D. and R.E. Malcolm. 1985. Influence of humic substances on growth and physiological processes. pp. 37-75 In: Vaughan, D. and R.E. Malcolm (eds.). Soil organic matter and biological activity. Vol. 16. Springer, Dordrecht, The Netherlands. Doi: https://doi.org/10.1007/978-94-009-5105-1_2
  73. Vincent, J.M. 1970. A manual for the practical study of root nodule bacteria. IBP Handbook 15 Blackwell Scientific, Oxford, UK.
  74. Yadegari, M., H.A. Rahmani, G. Noormohammadi, and A. Ayneband. 2008. Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria (PGPR) on yield and yield components. Pak. J. Biol. Sci. 11(15), 1935-1939. Doi: https://doi.org/10.3923/pjbs.2008.1935.1939
  75. Yakhin, O.I., A.A. Lubyanov, I.A. Yakhin, and P.H. Brown. 2017. Biostimulants in plant science: a global perspective. Front. Plant Sci. 7, 2049. Doi: https://doi.org/10.3389/fpls.2016.02049
  76. Zandonadi, D.B. and J.G. Busato. 2012. Vermicompost humic substances: technology for converting pollution into plant growth regulators. Int. J. Environ. Sci. Eng. Res. 3(2), 73-84.
  77. Zandonadi, D.B., L.P. Canellas, and A.R. Façanha. 2007. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225(6), 1583-1595. Doi: https://doi.org/10.1007/s00425-006-0454-2
  78. Zandonadi, D.B., M.P. Santos, J.G. Busato, L.E.P. Peres, and A.R. Façanha. 2013. Plant physiology as affected by humified organic matter. Theor. Exp. Plant Physiol. 25(1), 13-25. Doi: https://doi.org/10.1590/S2197-00252013000100003
  79. Zandonadi, D.B., M.P. Santos, L.O. Medici, and J. Silva. 2014. Ação da matéria orgânica e suas frações sobre a fisiologia de hortaliças. Hortic. Bras. 32(1), 14-20. Doi: https://doi.org/10.1590/S0102-05362014000100003

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.