Un polímero superabsorbente de agua mejora el establecimiento de plántulas en algunas plantas de estación cálida
Resumen
La sequía reduce el establecimiento de plantas. El establecimiento desigual y fallido provoca la pérdida de cultivos. Este experimento tuvo como objetivo determinar el efecto de las tasas de aplicación de superabsorbentes de agua (0, 2, 4, 6 y 8 g m-2) en el establecimiento de plantas de mijo cola de zorra, eneldo y fenogreco. Este experimento de campo se realizó en una zona semiárida. El superabsorbente de agua utilizado fue sintético y del tipo acrilamida, ácido acrílico y acrilato de potasio, capaz de absorber un 220% de humedad por su peso. El ciclo de absorción de agua y secado del superabsorbente de agua es repetible. Las comparaciones de medias mostraron que el polímero superabsorbente de agua mejoró el peso fresco de las plántulas, el peso seco de las plántulas, la altura de las plantas y el porcentaje de emergencia de las plántulas en todas las plantas estudiadas. En general, a excepción del mijo cola de zorra, se recomienda una tasa de superabsorbente de agua de 8 g m-2 para una alta emergencia de plántulas. Para el mijo cola de zorra, una proporción de polímero superabsorbente de 6 g m-2 es suficiente.
Palabras clave
Eneldo, Porcentaje de emergencia, Fenogreco, Mijo cola de zorra, Hidrogel
Citas
- Akinyosoye, S.T., J.A. Adetumbi, O.D. Amusa, M.O. Olowolafe, and J.O. Olasoji. 2014. Effect of seed size on in vitro seed germination, seedling growth, embryogenic callus induction and plantlet regeneration from embryo of maize (Zea mays L.) seed. Niger. J. Genet. 28(2), 1-7. Doi: https://doi.org/10.1016/j.nigjg.2015.06.001
- Albalasmeh, A.A., O. Mohawesh, M.A. Gharaibeh, A.G. Alghamdi, M.A. Alajlouni, and A.M. Alqudah. 2022. Effect of hydrogel on corn growth, water use efficiency, and soil properties in a semi-arid region. J. Saudi Soc. Agric. Sci. 21(8), 518-524. Doi: https://doi.org/10.1016/j.jssas.2022.03.001
- Alizadeh, A. 2005. Soil, water-plant relationship. 4th ed. Emam Reza university; Astan Ghods Razavi Publication, Mashhad, Iran.
- Armandpisheh, O., A.H. Shirani Rad, I. Allahdadi, A. Ebadi, and A.A. Koliaei. 2011. The reduction of unpleasant effects of drought stress with the application of zeolite the canola (Brassica napus L.) seeds characteristics. Plant and Ecosystem, 6(24), 67-75.
- Behera, S. and P.A. Mahanwar. 2020. Superabsorbent polymers in agriculture and other applications: a review. Polym.-Plast. Technol. Mater. 59(4), 341-356. Doi: https://doi.org/10.1080/25740881.2019.1647239
- Bigot, M., J. Guterres, L. Rossato, A. Pudmenzky, D. Doley, M. Whittaker, U. Pillai-McGarry, and S. Schmidt. 2013. Metal-binding hydrogel particles alleviate soil toxicity and facilitate healthy plant establishment of the native metallophyte grass Astrebla lappacea in mine waste rock and tailings. J. Hazard. Mater. 248-249, 424-434. Doi: https://doi.org/10.1016/j.jhazmat.2013.01.025
- Cao, L. and N. Li. 2021. Activated-carbon-filled agarose hydrogel as a natural medium for seed germination and seedling growth. Int. J. Biol. Macromol. 177, 383-391. Doi: https://doi.org/10.1016/j.ijbiomac.2021.02.097
- Dhiman, J., S.O. Prasher, E. ElSayed, R.M. Patel, C. Nzediegwu, and A. Mawof. 2021a. Effect of hydrogel based soil amendments on heavy metal uptake by spinach grown with wastewater irrigation. J. Clean. Prod. 311, 127644. Doi: https://doi.org/10.1016/j.jclepro.2021.127644
- Dhiman, J., S.O. Prasher, E. ElSayed, R.M. Patel, C. Nzediegwu, and A. Mawof, 2021b. Effect of hydrogel based soil amendments on yield and growth of wastewater irrigated potato and spinach grown in a sandy soil. Environ. Technol. Innov. 23, 101730. Doi: https://doi.org/10.1016/j.eti.2021.101730
- Ellis, R.A. and E.H. Roberts. 1981. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 9, 373-409.
- FAO. 2009. Crop production statistics. In: http://www.fao.org/docrep/010/ah864e/ah864e00.htm; consulted: June, 2024.
-
- Iran's Meteorological Organization. 2024. Meteorological data. In: https://www.irimo.ir/index.php?newlang=eng; consulted: July, 2024.
- Jacobsen, S.E. and A.P. Bach. 1998. The influence of temperature on seed germination rate in quinoa) Chenopodium quinoa Willd). Seed Sci. Technol. 26, 515-523.
- Jiang, T., L. Teng, S. Wei, L. Deng, Z. Luo, Y. Chen, and D.C. Flanagan. 2010. Application of polyacrylamide to reduce phosphorus losses from a Chinese purple soil: laboratory and field investigation. J. Environ. Manage. 91(7), 1437-1445. Doi: https://doi.org/10.1016/j.jenvman.2010.02.006
- Johnson, M.S. and R.T. Leah. 1990. Effect of superabsorbent polyacrylamides on efficiency of water use by crop seeding. J. Sci. Food Agr. 52(3), 431-434. Doi: https://doi.org/10.1002/jsfa.2740520316
- Kafi, M., A. Nezami, H. Hosseini, and A. Masoumi. 2005. Physiological effects of drought stress by polyethylene glycol on germination of lentil (Lens culinaris Medik.) genotypes. Iran. J. Field Crops Res. 3(1), 69-81.
- Karimi, A. and M. Naderi. 2007. Yield and water use efficiency of forage corn as influenced by superabsorbent polymer application in soils with different textures. Agric. Res. 7(3), 187-198.
- Karimi, A., M. Noshadi, and M. Ahmadzadeh. 2009. Effects of super absorbent polymer (Igeta) on crop, soil water and irrigation interval. J. Water Soil Sci. 12(46), 403-414.
- Khashei Siuki, A., M. Koochakzadeh, and M. Shahabifar. 2009. Effect of natural zeolite application and soil moisture on yield components of corn (Zea mays L.). Iran. J. Soil Res. 22(2), 235-241. Doi: https://doi.org/10.22092/ijsr.2009.127006
- Khorram, M. and E. Vasheghani-Farahani. 2003. Fast responsive thermosensitive hydrogels as drug delivery systems. Iran. Polymer J. 12(4), 316-322.
- Koupai, J.A., S.S. Eslamian, and J.A. Kazemi. 2008. Enhancing the available water content in unsaturated soil zone using hydrogel, to improve plant growth indices. Ecohydrol. Hydrobiol. 8(1), 67-75. Doi: https://doi.org/10.2478/v10104-009-0005-0
- Langan, E.C. and H.W. Christie. 1985. Seed coating composition and method. Patent US4493162A.
- Liu, C., F. Lei, P. Li, J. Jiang, and K. Wang. 2020. Borax crosslinked fenugreek galactomannan hydrogel as potential water-retaining agent in agriculture. Carbohydr. Polym. 236, 116100. Doi: https://doi.org/10.1016/j.carbpol.2020.116100
- Luo, Z.-B. K. Li, X. Jiang, and A. Polle. 2009. Ectomycorrhizal fungus (Paxillus involutus) and hydrogels affect performance of Populus euphratica exposed to drought stress. Ann. Forest Sci. 66(1), 106-114. Doi: https://doi.org/10.1051/forest:2008073
- Oladosu, Y., M.Y. Rafii, F. Arolu, S.C. Chukwu, M.A. Salisu, I.K. Fagbohun, T.K. Muftaudeen, S. Swaray, and B.S. Haliru. 2022. Superabsorbent polymer hydrogels for sustainable agriculture: a review. Horticulturae 8(7), 605. Doi: https://doi.org/10.3390/horticulturae8070605
- Madsen, M.D., K.W. Davies, C.S. Boyd, D. Kerby, and T.J. JSvejcar. 2016. Emerging seed enhancement technologies for overcoming barriers to restoration. Restor. Ecol. 24(Suppl. 2), 77-84. Doi: https://doi.org/10.1111/rec.12332
- Makino, K., R. Idenuma, and H. Ohshima. 1996. A model for erosion kinetics of a hydrogel matrix. Colloids Surf. B Biointerfaces 8(1-2), 93-100. Doi: https://doi.org/10.1016/S0927-7765(96)01313-6
- Mazzeo, M.S., T. Chai, M. Daviran, and K.M. Schultz. 2019. Characterization of the kinetics and mechanism of degradation of human mesenchymal stem cell-laden poly(ethylene glycol) hydrogels. ACS Appl. Bio Mater. 2(1), 81-92. Doi: https://doi.org/10.1021/acsabm.8b00390
- Meyvis, T.K.L., S.C. De Smedt, J. Demeester, and W.E. Hennink. 2000. Influence of the degradation mechanism of hydrogels on their elastic and swelling properties during degradation. Macromolecules 33(13), 4717-4725. Doi: https://doi.org/10.1021/ma992131u
- Montesano, F.F., A. Parente, P. Santamaria, A. Sannino, and F. Serio. 2015. Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric. Agric. Sci. Proc. 4, 451-458. Doi: https://doi.org/10.1016/j.aaspro.2015.03.052
- Narjary, B., P. Aggarwal, A. Singh, D. Chakraborty, and R. Singh. 2012. Water availability in different soils in relation to hydrogel application. Geoderma 187-188, 94-101. Doi: https://doi.org/10.1016/j.geoderma.2012.03.002
- Nassaj-Bokharaei, S., B. Motesharezedeh, H. Etesami, and E. Motamedi. 2021. Effect of hydrogel composite reinforced with natural char nanoparticles on improvement of soil biological properties and the growth of water deficit-stressed tomato plant. Ecotoxicol. Environ. Saf. 223, 112576. Doi: https://doi.org/10.1016/j.ecoenv.2021.112576
- Orikiriza, L.J.B., H. Agaba, M. Tweheyo, G. Eilu, J.D. Kabasa, and A.J. Hüttermann. 2009. Amending soils with hydrogels increases the biomass of nine tree species under non-water stress conditions. Clean Soil Air Water 37(8), 615-620. Doi: https://doi.org/10.1002/clen.200900128
- Otorres, A. and G.M. Soto. 2017. Potassium acrylate: a novelty in hydroponic substrates. pp. 1-8. In: XIII International Engineering Congress (CONIIN). Santiago de Queretaro, Mexico. Doi: https://doi.org/10.1109/CONIIN.2017.7968177
- Peyrusson, F. 2021. Hydrogels improve plant growth in mars analog conditions. Front. Astron. Space Sci. 8, 729278. Doi: https://doi.org/10.3389/fspas.2021.729278
- Prisa, D. and G. Guerrini. 2023. Innovative hydrogels use in the germination and growth of tree species Paulownia tomentosa and Cupressus sempervirens. GSC Adv. Res. Rev. 14(2), 121-128. Doi: https://doi.org/10.30574/gscarr.2023.14.2.0058
- Qanadzadeh, M., A. Faridhosseini, N. Sadaqat, S. Javidi, and H. Barzegar. 2015. The effect of superabsorbent polymer on the physical properties of three types of soil texture (sand, loam, clay). In: National Congress of Irrigation and Drainage of Iran. Ferdowsi University of Mashhad, Mashhad, Iran.
- Rafiei, Z. 2010. Comparing effect of hydrogel and compost on establishment and growth properties of Haloxilon aphyllum. MSc thesis. College of Natural Resources, University of Tehran.
- Rifat, H. and A. Safdar. 2004. Water absorption by synthetic polymer (Aquasorb) and its effect on soil properties and tomato yield. J. Agric. Biol. 6, 998-1002.
- Ritonga, H., A. Nurfadillah, F.S. Rembon, L.O.A.N. Ramadhan, and M. Nurdin. 2019. Preparation of chitosan-EDTA hydrogel as soil conditioner for soybean plant (Glycine max). Groundw. Sustain. Dev. 9, 100277. Doi: https://doi.org/10.1016/j.gsd.2019.100277
- Seefeldet, S.S., K.K. Kidwell, and J.E. Waller. 2002. Base growth temperature, germination rates and growth response of contemporary spring wheat (Triticum aestivum L.) cultivars from the USA Pacific North West. Field Crops Res. 75(1), 47-52. Doi: https://doi.org/10.1016/S0378-4290(02)00007-2
- Supare, K. and P.A. Mahanwar. 2022. Starch-derived superabsorbent polymers in agriculture applications: an overview. Polym. Bull. 79, 5795-5824. Doi: https://doi.org/10.1007/s00289-021-03842-3
- Tan, W.K., J. Zhu, J.Y. Lim, Z. Gao, C.S. Loh, J. Li, and C.N. Ong. 2021. Use of okara-derived hydrogel for enhancing growth of plants by minimizing leaching and locking nutrients and water in growing substrate. Ecol. Eng. 159, 106122. Doi: https://doi.org/10.1016/j.ecoleng.2020.106122
- Thomas, D.S. 2008. Hydrogel applied to the root plug of subtropical eucalypt seedlings halves transplant death following planting. Forest Ecol Manage. 255(3-4), 1305-1314. Doi: https://doi.org/10.1016/j.foreco.2007.10.035
- Wang, H., J. Wei, and G.P. Simon. 2014. Response to osmotic pressure versus swelling pressure: comment on “bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy”. Environ. Sci. Technol. 48(7), 4214-4215. Doi: https://doi.org/10.1021/es5011016
- Zareian, F., M. Jafari, S.A. Javadi, and A. Tavili. 2018. Application of zeolite and geohumus superabsorbent on establishment and some growth indices of Nitraria schoberi L. Acta Ecol. Sin. 38(4), 296-301. Doi: https://doi.org/10.1016/j.chnaes.2017.12.005
- Zowada, R. and R. Foudazi. 2023. Macroporous hydrogels for soil water retention in arid and semi-arid regions. RSC Appl. Polym. 1(2), 243-253. Doi: https://doi.org/10.1039/D3LP00117B