Path Loss Characterization in an Indoor Laboratory Environment at 3.7 GHz in Line-Of-Sight Condition

Main Article Content


Sandy Enrique Avella-Cely
Juan Carlos Muñoz-Pérez, M.Sc.
Herman Antonio Fernández-González, Ph. D.
Lorenzo Rubio-Arjona, Ph. D.
Juan Ribera Reig-Pascual, Ph. D.
Vicent Miguel Rodrigo-Peñarrocha, Ph. D.


The objective of this work is to propose experimental path loss propagation models for communication channels in indoor environments. In this sense, an experimental path loss characterization has been achieved, according to the measurements campaign carried out in a typical scenario of a university campus. These narrowband measurements were collected in the laboratory environment at 3.7 GHz in line-of-sight (LOS) condition. Also, these measurements were carried out at night to simulate stationary channel conditions. Thus, the results obtained show the values of the parameters of the close-in (CI) free space reference distance and floating-intercept (FI) path loss models, in terms of the transmitter and receiver separation distance. It should be noted that these values of the path loss models have been extracted applying linear regression techniques to the measured data. Also, these values agree with the path loss exponent values presented by other researchers in similar scenarios. The path loss behavior can be described with the implementation of these models. However, more measurement campaigns are needed to improve the understanding of propagation channel features, as well as to obtain better precision in the results obtained. This, in order to optimize the deployment and performance of next fifth-generation (5G) networks that combine indoor environments to offer their services and applications.


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors who publish in this Journal accept the following conditions:

a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.

b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.

c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.

d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.

e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.


[1] J. G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A. C. K. Soong, J. C. Zhang, "What will 5G be?," IEEE Journal on selected areas in communications, vol. 32 (6), pp. 1065-1082, 2014.

[2] B. Ai, K. Guan, R. He, J. Li, G. Li, D. He, Z. Zhong, K. M. S. Huq, "On Indoor Millimeter Wave Massive MIMO Channels: Measurement and Simulation," IEEE Journal on Selected Areas in Communications, vol. 35 (7), pp. 1678-1690, Jul. 2017.

[3] J. Zhang, P. Tang, L. Tian, Z. Hu, T. Wang, H. Wang, "6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication," Science China Information Sciences, vol. 60 (8), e080301, 2017.

[4] C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, E. Hepsaydir, "Cellular Architecture and Key Technologies for 5G Wireless Communication Networks," IEEE Communications Magazine, vol. 52 (2), pp. 122-130, Feb. 2014.

[5] C. X. Wang, J. Bian, J. Sun, W. S. Zhang, M. G. Zhang, "A Survey of 5G Channel Measurements and Models," IEEE Communications Surveys and Tutorials, vol. 20 (4), pp. 3142-3168, 2018.

[6] L. Rubio, J. Reig, H. Fernández, "Propagation aspects in vehicular networks," Vehicular Technologies: Increasing Connectivity, chap. 21, pp. 376-414, 2011.

[7] International Telecommunication Union, Guidelines for evaluation of radio interface technologies for IMT-2020, 2017.

[8] D. P. He, B. Ai, K. Guan, L. H. Wang, Z. D. Zhong, T. Kurner, "The Design and Applications of High-Performance Ray-Tracing Simulation Platform for 5G and Beyond Wireless Communications: A Tutorial," IEEE Communications Surveys and Tutorials, vol. 21 (1), pp. 10-27, 2019.

[9] Federal Communications Commission, The FCC's 5G FAST Plan, 2019.

[10] European Commision-Radio Spectrum Policy Group, Strategic Roadmap Towards 5G for Europe, 2016.

[11] B. Halvarsson, A. Simonsson, A. Elgcrona, R. Chana, P. Machado, H. Asplund, "5G NR testbed 3.5 GHz coverage results," in IEEE 87th Vehicular Technology Conference, 2018, pp. 1-5.

[12] A. M. Al-Samman, T. A. Rahman, T. A. Hadhrami, A. Daho, M. N. Hindia, M. H. Azmi, K. Dimyati, M. Alazab, "Comparative Study of Indoor Propagation Model Below and Above 6 GHz for 5G Wireless Networks," Electronics, vol. 8 (1), e44, Jan. 2019.

[13] P. Kyosti, "WINNER II channel models," IST, Tech. Rep. IST-4-027756 WINNER II D1. 1.2 V1. 2, 2007.

[14] T. S. Rappaport, Y. C. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, J. H. Zhang, "Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks-With a Focus on Propagation Models," IEEE Transactions on Antennas and Propagation, vol. 65 (12), pp. 6213-6230, Dec. 2017.

[15] L. Rubio, R. P. Torres, V. M. R. Peñarrocha, J. R. Pérez, H. Fernandez, J. M. M. G. Pardo, J. Reig, "Contribution to the Channel Path Loss and Time-Dispersion Characterization in an Office Environment at 26 GHz," Electronics, vol. 8 (11), e1261, Nov. 2019.

[16] T. S. Rappaport, R. W. Heath Jr, R. C. Daniels, J. N. Murdock, Millimeter wave wireless communications. Pearson Education, 2015.

[17] G. R. MacCartney, T. S. Rappaport, S. Sun, S. Deng, "Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks," IEEE Access, vol. 3, pp. 2388-2424, 2015.

[18] A. Sreedevi, T. R. Rao, M. Susila, "Device-to-Device Radio Link Analysis at 2.4, 3.4, 5.2, 28 and 60 GHz in Indoor Communication Environments," Frequenz, vol. 73 (3-4), pp. 131-141, 2019.

[19] X. Zhou, Z. Zhong, X. Blan, R. He, R Sun, K. Guan, K. Liu, X. Guo, "Measurement and Analysis of Channel Characteristics in Reflective Environments at 3.6 GHz and 14.6 GHz," Applied Sciences-Basel, vol. 7 (2), e165, Feb. 2017.


Download data is not yet available.

Most read articles by the same author(s)