Beneficio puzolánico de las mezclas de cenizas volantes y de escoria de acero en el desarrollo de la resistencia a la compresión uniaxial del suelo estabilizado con cal
Resumen
La investigación examinó los beneficios puzolánicos logrados debido a la modificación de la estabilización con cal de un suelo mediante el uso de una combinación de dos desechos industriales: el Flyash (FA) y el Steel Slag (SS). Se seleccionaron dos contenidos de cal de 6 % y 8 % para estabilizar el suelo; uno por encima del Consumo Inicial de Cal (ICL) y el otro por encima del Contenido Óptimo de Cal (OLC), respectivamente; estos formaron las muestras de control para determinar el efecto de los desechos sólidos sobre la estabilización con cal. La relación cal-residuos sólidos totales se mantuvo en 1:1 y la relación FA-SS varió dentro del contenido total de desechos sólidos adoptado para la modificación de la estabilización con cal. La resistencia a la compresión no confinada (UCS) de las muestras estabilizadas se determinó mediante moldeo de muestras UCS de 38 x 76 mm y se curó durante 2 horas, 7, 14 y 28 días. Las muestras después del curado se tensaron hasta que el estudio de los beneficios puzolánicos de la enmienda FA-SS se hizo imposible. Los resultados de la investigación revelaron que la adición de FA y SS benefició la fuerza puzolánica entre el 3,5 % y el 15 %. El contenido óptimo de la dosificación FA y SS también varió con el contenido de cal adoptado. Para un contenido de cal del 6 %, se encontró que la relación FA/SS de 1:1 fue la más óptima, mientras que para el contenido de cal del 8 % se encontró que la relación FA/SS de 3:1 desarrolló la resistencia máxima. También se encontró que la modificación de la estabilización con cal utilizando FA/SS provocó, claramente, diferencias en las etapas de estabilización que no se observaron cuando solo se adoptó la cal como estabilizador.
Palabras clave
cal, cenizas, escoria, mezclas, resistencia, suelo
Citas
[1] D. N. Little, Handbook for Stabilization of Pavement Subgrades and Base Courses with Lime, Austin, Texas, 1995.
[2] Z. Ji-ru, and C. Xing, “Stabilization of Expansive Soil by Lime and Fly Ash,” J. Wuhan Univ. Technol. - Mater. Sci. Ed. vol. 17(4), pp. 73–77, 2002. DOI: https://doi.org/10.1007/BF02838423.
[3] N. K. Sharma, S. K. Swain, and U. C. Sahoo, “Stabilization of a Clayey Soil with Fly Ash and Lime: A Micro Level Investigation,” Geotech. Geol. Eng. vol. 30(5), pp. 1197–1205, 2012. DOI: https://doi.org/10.1007/s10706-012-9532-3.
[4] J. James, S. V. Lakshmi, P. K. Pandian, and S. Aravindan, “Effect of Lime on the Index Properties of Rice Husk Ash Stabilized Soil,” Int. J. Appl. Eng. Res. vol. 9(18), pp. 4263–4272, 2014.
[5] A. S. Muntohar, S. Widianti, E. Hartono, and W. Diana, “Engineering Properties of Silty Soil Stabilized with Lime and Rice Husk Ash and Reinforced with Waste Plastic Fiber,” J. Mater. Civ. Eng. vol. 25(9), pp. 1260–1270, 2013. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000659.
[6] S. Wild, J. M. Kinuthia, G. I. Jones, and D. D. Higgins, “Effects of partial substitution of lime with ground granulated blast furnace slag (GGBS) on the strength properties of lime-stabilised sulphate-bearing clay soils,” Eng. Geol. vol. 51(1), pp. 37–53, 1998. DOI: https://doi.org/10.1016/S0013-7952(98)00039-8.
[7] E. Celik, and Z. Nalbantoglu, “Effects of ground granulated blastfurnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils,” Eng. Geol. vol. 163, pp. 20–25, 2013. DOI: https://doi.org/10.1016/j.enggeo.2013.05.016.
[8] A. Ghosh, “Compaction Characteristics and Bearing Ratio of Pond Ash Stabilized with Lime and Phosphogypsum,” J. Mater. Civ. Eng. vol. 22(4), pp. 343–351, 2010. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000028.
[9] J. James, and P. K. Pandian, “Effect of Phosphogypsum on the Strength of Lime Stabilized Expansive Soil,” Gradevinar, vol. 66(12), pp. 1109–1116, 2014. DOI: https://doi.org/10.14256/JCE.1097.2014.
[10] L. C. Dang, H. Hasan, B. Fatahi, R. Jones, and H. Khabbaz, “Enhancing the Engineering Properties of Expansive Soil Using Bagasse Ash and Hydrated Lime,” Int. J. GEOMATE. vol. 11(25), pp. 2447–2454, 2016.
[11] J. James, and P. K. Pandian, “Valorisation of Sugarcane Bagasse Ash in Manufacture of Lime-Stabilized Blocks,” Slovak J. Civ. Eng. vol. 24(2), pp. 7–15, 2016. DOI: https://doi.org/10.1515/sjce-2016-0007.
[12] M. N. Rahmat, and N. Ismail, “Sustainable stabilisation of the Lower Oxford Clay by non-traditional binder,” Appl. Clay Sci. vol. 52(3), pp. 199–208, 2011. DOI: https://doi.org/10.1016/j.clay.2011.02.011.
[13] J. James, and P. K. Pandian, “A Study on the Early UCC Strength of Stabilized Soil Admixed with Industrial Waste Materials,” Int. J. Earth Sci. Eng. vol. 07(03), pp. 1055–1063, 2014.
[14] J. James, and P. K. Pandian, “Geoenvironmental application of sugarcane press mud in lime stabilisation of an expansive soil: a preliminary report,” Aust. J. Civ. Eng. vol. 14(2), pp. 114–122, 2016. DOI: https://doi.org/10.1080/14488353.2017.1316026.
[15] J. James, and P. K. Pandian, “Development of Early Strength of Lime Stabilized Expansive Soil: Effect of Red Mud and Egg Shell Ash,” Acta Tech. Corviniensis - Bull. Eng. vol. 9(1), pp. 93–100, 2016.
[16] C. W. Gray, S. J. Dunham, P. G. Dennis, F. J. Zhao, and S. P. Mcgrath. “Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud,” Environ. Pollut. vol. 142(3), pp. 530–539, 2006. DOI: https://doi.org/10.1016/j.envpol.2005.10.017.
[17] J. James, P. K. Pandian, and A. S. Switzer, “Egg Shell Ash as Auxiliary Addendum to Lime Stabilization of an Expansive Soil,” J. Solid Waste Technol. Manag. vol. 43(1), pp. 15–25, 2017. DOI: https://doi.org/doi.org/10.5276/JSWTM.2017.15.
[18] J. James, and P. K. Pandian, “Industrial Wastes as Auxiliary Additives to Cement / Lime Stabilization of Soils,” Adv. Civ. Eng. vol. 2016(Article ID 1267391), pp. 1–17, 2016. DOI: https://doi.org/10.1155/2016/1267391.
[19] C. Heidrich, H. -J Feuerborn, and A. Weir, “Coal Combustion Products : a Global Perspective,” In: World of Coal Ash Conference, Lexington, KY, 2013.
[20] H. Motz, A. Ehrenberg, and D. Mudersbach, “Dry Solidification with heat recovery of ferrous slag,” In: Third International Slag Valorisation Symposium, Leuven, Belgium, 2013.
[21] Central Electricity Authority, “Report on Fly Ash Generation at Coal / Lignite Based Thermal Power Stations and its Utilization in the Country for the Year 2014-15,” New Delhi, India, 2015.
[22] FICCI, “Using Steel slag in infrastructure development,” Availble in: http://blog.ficci.com/steel-slag/5291/, 2014.
[23] Y. Huang, and Z. Lin, “Investigation on phosphogypsum–steel slag–granulated blast-furnace slag–limestone cement,” Constr. Build. Mater. vol. 24(7), pp. 1296–1301, 2010. DOI: https://doi.org/10.1016/j.conbuildmat.2009.12.006.
[24] M. Chen, M. Zhou, and S. Wu, “Optimization of blended mortars using steel slag sand,” J. Wuhan Univ. Technol. Sci. Ed. vol. 22(4), pp. 741–744, 2007. DOI: https://doi.org/10.1007/s11595-006-4741-3.
[25] W. Shen, M. Zhou, W. Ma, J. Hu, and Z. Cai, “Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material.,” J. Hazard. Mater. vol. 164(1), pp. 99–104, 2009. DOI: https://doi.org/10.1016/j.jhazmat.2008.07.125.
[26] D.G. Grubb, M. Wazne, S. C. Jagupilla, and N. E. Malasavage, “Beneficial Use of Steel Slag Fines to Immobilize Arsenite and Arsenate : Slag Characterization and Metal Thresholding Studies,” J. Hazardous, Toxic Radioact. Waste. vol. 15(3), pp. 130–150, 2011. DOI: https://doi.org/10.1061/(ASCE)HZ.1944-8376.0000077.
[27] Y. Liang, W. Li, and X. Wang,“Influence of Water Content on Mechanical Properties of Improved Clayey Soil Using Steel Slag,” Geotech. Geol. Eng. vol. 31(1), pp. 83–91, 2012. DOI: https://doi.org/10.1007/s10706-012-9564-8.
[28] BIS, IS 2720 Methods of Test For Soils:Part 1 - Preparation of Dry Soil Sample for Various Tests, pp. 1–10, 1983.
[29] BIS, IS 1498 Classification and Identification of Soils for General Engineering Purposes, pp. 4–24, 1970.
[30] A. A. Nasrizar, K. Ilamparuthi, and M. Muttharam, “Quantitative Models for Strength of Lime Treated Expansive Soil,” In: GeoCongress, American Society of Civil Engineers, Oakland, California, US, 2012. DOI: https://doi.org/10.1061/9780784412121.101.
[31] J. L. Eades, and R. E. Grim, “A Quick Test to Determine Lime Requirements for Lime Stabilization,” Highw. Res. Rec. vol. 139, pp. 61–72, 1966.
[32] ASTM, D6276 Standard Test Method for Using pH to Estimate the Soil-Lime Proportion Requirement, pp. 1–4, 2006.
[33] M. R. Thompson, “Factors Influencing the Plasticity and Strength of Lime Soil Mixtures,” Univ. Illunois Bull. vol. 64(100), pp. 1–19, 1967.
[34] Y. Bagheri, F. Ahmad, and M. A. M. Ismail, “Strength and mechanical behavior of soil–cement–lime–rice husk ash (soil–CLR) mixture,” Mater. Struct. vol. 47(1–2), pp. 55–66, 2014. DOI: https://doi.org/10.1617/s11527-013-0044-2.
[35] ASTM, ASTM D 5102 Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures, pp. 1–6, 1996.
[36] S. Bhuvaneshwari, R. G. Robinson, and S. R. Gandhi, “Behaviour of Lime Treated Cured Expansive Soil Composites,” Indian Geotech. J. vol. 44(3), pp. 278–293, 2013. DOI: https://doi.org/10.1007/s40098-013-0081-3.
[37] J. James, P. K. Pandian, K. Deepika, J. M. Venkatesh, V. Manikandan, and P. Manikumaran, “Cement Stabilized Soil Blocks Admixed with Sugarcane Bagasse Ash,” J. Eng. vol. 2016(Article ID 7940239), pp. 1–9, 2016.
[38] F. G. Bell, “Lime stabilization of clay minerals and soils,” Eng. Geol. vol. 42(4), pp. 223–237, 1996. DOI: https://doi.org/10.1016/0013-7952(96)00028-2.
[39] A. Muhmed, and D. Wanatowski, “Effect of Lime Stabilisation on the Strength and Microstructure of Clay,” IOSR J. Mech. Civ. Eng. vol. 6(3), pp. 87–94, 2013.
[40] M. Dafalla, E. Mutaz, and M. Al-shamrani, “Compressive strength variations of lime-treated expansive soils,” In: International Foundations Congress and Equipment Expo, San Antonio, Texas, pp. 1402–1409, 2015. DOI: https://doi.org/10.1061/9780784479087.126.
[41] K. Rajakumaran, “An Experimental Analysis on Stabilization of Expansive Soil With Steel Slag and Fly Ash,” Int. J. Adv. Eng. Technol. vol. 7(6), pp. 1745–1752, 2015. DOI: https://doi.org/10.5121/ijcsa.2014.4120.
[42] I. Z. Yildirim, M. Prezzi, and H. Santoso, “Use of Soil-Steel Slag-Class-C Fly Ash Mixtures in Subgrade Applications, Publication FHWA/IN/JTRP-2013/06,” West Lafayette, Indiana, 2013. DOI: https://doi.org/10.5703/1288284315188.