Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

LIFE CYCLE SUSTAINABILITY ASSESSMENT OF POWER GENERATION EXPANSION: THE CURRENT AND FUTURE SCENARIOS IN BRAZIL

Resumen

El paradigma de desarrollo centrado en la sostenibilidad no solo ha impulsado la actual transición energética hacia las fuentes renovables, sino que también se ha convertido en una prioridad para tener en cuenta todas aquellas cuestiones socio-ambientales a lo largo de la cadena de generación eléctrica, lo que implica una actualización de la forma en la que se planifica la expansión del suministro eléctrico en el futuro. En este contexto, este artículo explora la integración del Análisis de Sostenibilidad del Ciclo de Vida (ASCV) con un método de Análisis de Decisiones Multicriterio (ADM), denominado Técnica de Calificación de Atributos Múltiples Simples (SMARTER), para evaluar la sostenibilidad de la matriz eléctrica
actual y de los escenarios futuros en Brasil, proyectados por el Plan Decenal de Expansión Energética de Brasil 2027.
El análisis se realiza de acuerdo con nueve criterios distribuidos en las dimensiones ambiental, social y económica. Los resultados indican un mejor desempeño social, económico y ambiental de la matriz eléctrica nacional actual, así como, en sus escenarios futuros, principalmente, debido a la expansión de la participación de algunas fuentes de energía renovables. Con respecto a los escenarios futuros, aquellos con mayor participación de estas fuentes se asocian con el mejor desempeño en materia de sostenibilidad. No obstante, estos resultados no pretenden señalar el camino más adecuado para el Parque Nacional de Generación Eléctrica, ya que, para ello, también es necesario tomar en cuenta otros factores, además de los considerados en este artículo, como son los macroeconómicos, técnicos, de ubicación, políticas públicas, etc.

Palabras clave

Análisis de Sostenibilidad del Ciclo de Vida, Planificación Energética, Generación de Poder, Sostenibilidad

PDF (English)

Biografía del autor/a

João Gabriel Lassio

Ph.D. candidate

Energy Planning Program

Federal University of Rio de Janeiro, Brazil

Research fellow

Energy Transition and Sustainability Department of the Brazilian Electric Energy Research Center

(CEPEL), Brazil

M.Sc. in Sustainable Development and Transport

École Nationale de Ponts et Chaussées, France

Civil Engineering

Federal University of Rio de Janeiro, Brazil

Denise Matos

Ph.D. candidate

Energy Planning Program

Federal University of Rio de Janeiro, Brazil

Researcher

Energy Transition and Sustainability Department of the Brazilian Electric Energy Research Center

(CEPEL), Brazil

M.Sc. in Population Studies and Social Research

National School of Statistical Sciences, Brazil

Geography

State University of Rio de Janeiro, Brazil

David Castelo Branco

Ph.D. in Energy Planning

Federal University of Rio de Janeiro, Brazil

Assistant Professors of the Energy Planning Program

Federal University of Rio de Janeiro, Brazil

M.Sc. in Energy Planning

Federal University of Rio de Janeiro, Brazil

Mechanical Engineering

Federal University of Rio de Janeiro, Brazil

Alessandra Magrini

Ph.D. in Business Administration

Federal University of Rio de Janeiro

M.Sc. in Energy Planning

Federal University of Rio de Janeiro, Brazil

Chemical Engineering

Federal University of Rio de Janeiro, Brazil


Referencias

  • A. Maxim, "Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis," Energy Policy, vol. 65, pp. 284–297, Feb. 2014, doi: 10.1016/j.enpol.2013.09.059. DOI: https://doi.org/10.1016/j.enpol.2013.09.059
  • Brazil, "The Ten-Year Energy Expansion Plan 2030," Brasília, 2020.
  • J. G. Lassio, A. Magrini, and D. Castelo Branco, "Life cycle-based sustainability indicators for electricity generation: A systematic review and a proposal for assessments in Brazil," J. Clean. Prod., vol. 311, p. 127568, Aug. 2021, doi: 10.1016/j.jclepro.2021.127568. DOI: https://doi.org/10.1016/j.jclepro.2021.127568
  • W. Edwards and F. H. Barron, "Smarts and smarter: Improved simple methods for multiattribute utility measurement," Organ. Behav. Hum. Decis. Process., vol. 60, no. 3, 1994, doi: 10.1006/obhd.1994.1087. DOI: https://doi.org/10.1006/obhd.1994.1087
  • Brazil, "The Ten-Year Energy Expansion Plan 2027," Brasília, 2018.
  • A. Laurent, N. Espinosa, and M. Z. Hauschild, “LCA of Energy Systems,” in Life Cycle Assessment, M. Hauschild, R. Rosenbaum, and S. Olsen, Eds. Cham: Springer International Publishing, 2018, pp. 633–668. DOI: https://doi.org/10.1007/978-3-319-56475-3_26
  • S. Hong, C. J. A. Bradshaw, and B. W. Brook, "Evaluating options for sustainable energy mixes in South Korea using scenario analysis," Energy, vol. 52, pp. 237–244, 2013, doi: 10.1016/j.energy.2013.02.010. DOI: https://doi.org/10.1016/j.energy.2013.02.010
  • E. Santoyo-Castelazo and A. Azapagic, "Sustainability assessment of energy systems: integrating environmental, economic and social aspects," J. Clean. Prod., vol. 80, pp. 119–138, Oct. 2014, doi: 10.1016/j.jclepro.2014.05.061. DOI: https://doi.org/10.1016/j.jclepro.2014.05.061
  • S. J. W. Klein and S. Whalley, "Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis," Energy Policy, vol. 79, pp. 127–149, Apr. 2015, doi: 10.1016/j.enpol.2015.01.007. DOI: https://doi.org/10.1016/j.enpol.2015.01.007
  • M. Z. Akber, M. J. Thaheem, and H. Arshad, "Life cycle sustainability assessment of electricity generation in Pakistan: Policy regime for a sustainable energy mix," Energy Policy, vol. 111, no. September, pp. 111–126, Dec. 2017, doi: 10.1016/j.enpol.2017.09.022. DOI: https://doi.org/10.1016/j.enpol.2017.09.022
  • O. C. Filho, N. L. S. Junior, and G. Luedmann, “A Avaliação de Ciclo de Vida como ferramenta para a formulação de políticas públicas no Brasil,” Brasília, 2016. [Online]. Available: http://repositorio.ipea.gov.br/bitstream/11058/6685/1/td_2205.pdf.
  • C. G. Souza, R. G. Barbastefano, and R. C. Teixeira, "Life cycle assessment research in Brazil: characteristics, interdiciplinarity, and applications," Int. J. Life Cycle Assess., vol. 22, no. 2, pp. 266–276, Feb. 2017, doi: 10.1007/s11367-016-1150-5. DOI: https://doi.org/10.1007/s11367-016-1150-5
  • W. Kloepffer, "Life cycle sustainability assessment of products," Int. J. Life Cycle Assess., vol. 13, no. 2, pp. 89–95, Mar. 2008, doi: 10.1065/lca2008.02.376.
  • J. Guinée, "Life cycle sustainability assessment: What is it and what are its challenges?," in Taking Stock of Industrial Ecology, R. Clift and A. Druckman, Eds. Springer, Cham, 2016, pp. 45–68. DOI: https://doi.org/10.1007/978-3-319-20571-7_3
  • W. Kloepffer, "Life cycle sustainability assessment of products (with Comments by Helias A. Udo de Haes, p. 95)," 2008, doi: 10.1065/lca2008.02.376. DOI: https://doi.org/10.1065/lca2008.02.376
  • J. Elkington, "Cannibals with forks: The triple bottom line of sustainability," New Soc. Publ., 1998. DOI: https://doi.org/10.1108/eb025539
  • ISO, "ISO 14040: Environmental Management - Life Cycle Assessment - Principles and Framework," International Organization for Standardization. International Organization for Standardization, 2006.
  • UNEP, "Guidelines for Social Life Cycle Assessment of Products and Organizations 2020," 2020.
  • D. Hunkeler, K. Lichtenvort, and G. Rebitzer, Environmental Life Cycle Costing. Boca Raton: CRC Press, 2008. DOI: https://doi.org/10.1201/9781420054736
  • J. B. Guinée et al., “Life cycle assessment: Past, present, and future,” Environ. Sci. Technol., 2011, doi: 10.1021/es101316v. DOI: https://doi.org/10.1021/es101316v
  • P. P. Kalbar and D. Das, "Advancing life cycle sustainability assessment using multiple criteria decision making," in Life Cycle Sustainability Assessment for Decision-Making, 2020. DOI: https://doi.org/10.1016/B978-0-12-818355-7.00010-5
  • I. Khan, "Sustainability challenges for the south Asia growth quadrangle: A regional electricity generation sustainability assessment," J. Clean. Prod., vol. 243, p. 118639, Jan. 2020, doi: 10.1016/j.jclepro.2019.118639. DOI: https://doi.org/10.1016/j.jclepro.2019.118639
  • M. Ram, A. Aghahosseini, and C. Breyer, "Job creation during the global energy transition towards 100% renewable power system by 2050," Technol. Forecast. Soc. Change, vol. 151, p. 119682, Feb. 2020, doi: 10.1016/j.techfore.2019.06.008. DOI: https://doi.org/10.1016/j.techfore.2019.06.008
  • M. Tolmasquim, Renewable energy: hydro, biomass, wind, solar, ocean. Río de Janeiro, 2016.
  • K. Mongird et al., "Energy storage technology and cost characterization report," 2019. DOI: https://doi.org/10.2172/1573487
  • M. Tolmasquim, Thermoeletric energy: natural gas, biomass, coal, and nuclear. Río de Janeiro, 2016.
  • O. Schmidt, S. Melchior, A. Hawkes, and I. Staffell, "Projecting the Future Levelized Cost of Electricity Storage Technologies," Joule, vol. 3, no. 1, pp. 81–100, Jan. 2019, doi: 10.1016/j.joule.2018.12.008. DOI: https://doi.org/10.1016/j.joule.2018.12.008
  • G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz, and B. Weidema, "The ecoinvent database version 3 (part I): overview and methodology," Int. J. Life Cycle Assess., 2016, doi: 10.1007/s11367-016-1087-8. DOI: https://doi.org/10.1007/s11367-016-1087-8
  • M. A. J. Huijbregts et al., "ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level," Int. J. Life Cycle Assess., vol. 22, no. 2, pp. 138–147, Feb. 2017, doi: 10.1007/s11367-016-1246-y. DOI: https://doi.org/10.1007/s11367-016-1246-y
  • R. K. Rosenbaum et al., "USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment," Int. J. Life Cycle Assess., vol. 13, no. 7, pp. 532–546, Nov. 2008, doi: 10.1007/s11367-008-0038-4. DOI: https://doi.org/10.1007/s11367-008-0038-4

Descargas

Los datos de descargas todavía no están disponibles.