Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

NARINGINASE IMMOBILIZED ON MODIFIED BANANA PEEL WITH POTENTIAL APPLICATION IN THE CITRUS INDUSTRY

Resumen

Banana peel after chemical ant thermal modification was used as an alternative support to immobilize the commercial enzyme naringinase (Penicillum Decumbens); an immobilization yields greater than 70% was observed at pH 7. The structural characteristics of the support were determined by scanning electron microscopy with elemental analysis, showing the presence of pores and elements such as carbon, oxygen, sulfur, and zinc, while the attachment of the enzyme was concluded by infrared spectroscopy. For the free and immobilized enzyme, the KM and Vmax values were 0.0006 molar and 2000 U, and 0.0003 molar and 1666 U, respectively. The temperatures of the greatest activity for the free was 70°C and for the immobilized enzyme was 50°C, respectively, and the best pH was 4.5 in both cases. It was found that, after the third use, the catalyst maintained 50% of the enzymatic activity. These results seem to suggest the potential of the synthesized material for its application in the debittering of citrus juices.

Palabras clave

enzyme, immobilization, naringinase

PDF (English)

Referencias

  • E. Yushkova, E. Nazarova, A. Matyuhina, A. Noskova, D. Shavronskaya, V. Vinogradov, N. Skvortsova, E. Krivoshapkina, “Application of Immobilized Enzymes in Food Industry”. Journal of Agricultural and Food Chemistry, 2019, vol. 67(42), pp. 11553–11567. http://doi.org/ 10.1021/acs.jafc.9b04385
  • B. Srivastava, H. Singh, M. Khatri, G. Singh, S. K. Arya, “Immobilization of keratinase on chitosan graftedβ cyclodextrin for the improvement of the enzyme properties and application of free keratinase in the textile industry”. International Journal of Biological Macromolecules, 2020, vol. 165(A), pp. 1099-1110. https://doi.org/10.1016/j.ijbiomac.2020.10.009
  • L. Xuejiao, C. Wanwan, L. Meiling, C. Xu, L. Yanluo, Y. Wensheng, “Enzyme immobilization on ZIF-67/MWCNT composite engenders high sensitivity electrochemical sensing”. Journal of Electroanalytical Chemistry, 2019, vol. 833, pp. 505-511.https://doi.org/10.1016/j.jelechem.2018.12.027
  • M. Keon, M. McKie, L. Taylor-Edmonds, R. Andrews, “Evaluation of enzyme activity for monitoring biofiltration performance in drinking water treatment”. Water Research, 2021, vol. 205, pp. 117636. http://doi.org/10.1016/j. watres.2021.117636
  • U. F. Carreño-Sayago, “Industrial water treatment with heavy metals through zeolites and bioremediation systems with aquatic plants especially Eichhornia crassipes. State of art review”. Ingeniería Investigación y Desarrollo, 2014, vol. 15, no. 1, pp. 70–78. https://doi.org/10.19053/1900771X.3940
  • M. I. Hernández Hernández, C. Romero Guido, E. Torres Ramírez, “Bio-catalytic oxidation of aromatic pollutants caused by peroxidase from soybean”. Ingeniería Investigación y Desarrollo, 2022, vol. 22, no 2, pp. 44–50. https://doi. org/10.19053/1900771X.v22.n2.2022.15022
  • E. E. González, Y. A. Acuña, A. M. Quiroz, “Nanopartículas de oro funcionalizadas con L-Cisteína para detección de arsénico en agua” Ingeniería, Investigación y Desarrollo, 2021, vol. 21, no. 2, pp.66-72. https://doi.org/10.19053/1900771X.v21.n2.2021.14271
  • N. Bashir, M. Sood, J. Bandral, “Enzyme immobilization and its applications in food processing: A review”. International Journal of Chemical Studies, 2020 vol. 8(2), pp. 254-261. https://doi.org/10.22271/chemi.2020.v8.i2d.8779
  • A. Girelli, M. Astolfi, F. Scuto, “Agro-industrial wastes as potential carriers for enzyme immobilization: A review”. Chemosphere, 2019, vol. 244, pp. 125368. https://doi.org/10.1016/j.hemosphere.2019.125368
  • J. Kobayashi, Y, Mori, S. Kobayashi Shu, “Novel immobilization method of enzymes using a hydrophilic polymer support”. Chemical Communications, 2006 vol.40, pp. 4227–4229. http://doi.org/10.1039/B609335C
  • R. Yasmin, R. Maghraby, M. Rehan, M. El-Shabasy, I. H. Ahmed, E. Hassan, “Enzyme Immobilization Technologies and Industrial Applications”. ACS Omega, 2023, vol. 8, no. 6, pp. 5184–5196. https://doi.org/10.1021/acsomega.2c07560
  • J. Bié, B. Sepodes, P. C. B. Fernandes, M. H. L. Ribeiro, “Enzyme Immobilization and CoImmobilization: Main Framework, Advances and Some Applications”. Processes, 2022, vol. 10, no. 3, pp. 494-525. https://doi.org/10.3390/pr10030494
  • Z. Ashkan, R. Hemmati, A. Homaei, A. Dinari, M. Jamlidoost, A. Tashakor, “Immobilization of enzymes on nanoinorganic support materials: An update”, International Journal of Biological Macromolecules, 2021 Vol. 168, no. 31, pp. 708-721. http://doi.org/0.1016/j.ijbiomac.2020.11.127
  • H. J. Federsel, T. Moody, S. Taylo, “Recent Trends in Enzyme Immobilization—Concepts for Expanding the Biocatalysis Toolbox”. Molecules, 2021, vol. 26 (9), pp. 2822-2836. https://doi.org/10.3390/ molecules26092822
  • M. Zehra, M. N. Syed, M. Sohail. “Banana Peels: A Promising Substrate for the Coproduction of Pectinase and Xylanase from Aspergillus fumigatus MS16”. Polish Journal of Microbiology, 2020 vol. 69 no. 1, pp.19-26. doi:10.33073/pjm-2020-002
  • M. Puri, A. Kaur, C. J. Barrow, R. S. Singh, “Citrus peel influences the production of an extracellular naringinase by Staphylococcus xylosus MAK2 in a stirred tank reactor”. Applied Microbiology Biotechnology, 2011, vol. 89(3), pp.715-722. http://doi.org.10.1007/s00253-010-2897-4
  • M. Puri, U. C. Banerjee, Production, purification, and characterization of the debittering enzyme naringinase”. Biotechnology Advances, 2000, vol. 18(3), pp.207-217. https://doi.org/10.1016/S0734-9750(00)00034-3
  • J. Carceller-Carceller, J. J, Martínez, R. Monti, J. Bassan, M. Filice, J. Yu, M. Climent, S. Iborrat, A. Corma, “Covalent Immobilization of Naringinase over Two-Dimensional 2D Zeolites and its Applications in a Continuous Process to Produce Citrus Flavonoids and for Debittering of Juices”. Chem Cat Chem, 2020, Vol. 12 (18), pp. 4502-4511. https://doi.org/10.1002/cctc.202000320
  • E. Abraham, B. Deepa, L. A. Pothan, M. Jacob, S. Thomas, U. Cvelbar U, R. Anandjiwala, “Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach”, Carbohydrate Polymers, 2011, vol. 86, no. 4, pp. 1468-1475. https://doi.org/10.1016/j.carbpol.2011.06.034
  • L. Wang, P. Zhou P, Y. Guo, J. Zhang, X, Qiu, Y. Guan, M. Yu, H. Zhue, H. Zhang, “The effect of ZnCl2 activation on microwave absorbing performance in walnut shell-derived nano-porous carbon”. RSC Advances, 2019, vol. 9(17), pp. 9718–9728. http://doi.org/10.1039/c8ra09932d
  • M. Bradfor, “A Rapid and Sensitive Method for the Quantitation of Microgram Quantites of Protein Utilizing the Principle of Protein- Dye Binding”. Analytical Biochemistry, 1976 vol. 72(1-2), pp. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • T. McIlvaine, “A Buffer Solution for Colorimetric Comparison”. Journal of Biological Chemistry, 1921, vol. 49(1) pp. 183–186. https://doi.org/10.1016/S0021-9258(18)86000-8
  • H. Lineweaver, B. Dean, “The Determination of Enzyme Dissociation Constants”. Journal of the American Chemical Society, 2002, Vol. 53 (3), pp. 658–666. https://doi.org/10.1021/ja01318a036
  • H. Zheng, X. Jiang, “Immobilization of Soybean Hulls Peroxidase on Activated Carbon”. Asian Journal of Chemistry, 2014, vol.26(3), pp.685-689. https://doi.org/10.14233/ajchem.2014.15475
  • G. Vuković, D. A. Marinković, M. Čolić, M. D. Ristić, R. Aleksić, A. A. Perić-Grujić, P. S. Uskoković, “Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes”, Chemical Engineering Journal, vol. 157(1), pp.238-248. https://doi.org/10.1016/j.cej.2009.11.026
  • A. Natalello, D. Ami, S. Brocca, M. Lotti, S. M. Doglia, “Secondary structure, conformational stability and glycosylation of a recombinant Candida rugosalipase studied by Fourier-transform infrared spectroscopy”. Biochemical Journal 2005, vol. 385(2), pp. 511–517. https://doi.org/10.1042/BJ20041296
  • J. M. Salman, V. O. Njoku, B. H. Hameed,” Adsorption of pesticides from aqueous solution onto banana stalk activated carbon”, Chemical Engineering Journal, 2011, vol. 174(1) pp. 41-48. https://doi.org/10.1016/j.cej.2011.08.026.89
  • N. Prlainović, I. N, Bezbradica, J. Rogan, P. Uskoković, D. P, Mijin, A. Marinković, “Surface functionalization of oxidized multi-walled carbon nanotubes: Candida rugosa lipase immobilization”. Comptes Rendus Chimie 2016, vol. 19(3), pp. 363–370. https://doi.org/10.1016/j.crci.2015.10.008
  • J. Torres, F. Nogueira, M. Silva, J. Lopes, T. Tavares, T. Ramalho, A. Corrêa, “Novel eco-friendly biocatalyst: soybean peroxidase immobilized onto activated carbon obtained from agricultural waste”. RSC Advances, 2017, Vol. 7 no. 27, pp. 16460–16466. http://doi.org/10.1039/C7RA01309D
  • Y. Yandri, T. Ezra Rheinsky, S. Tati, S. Heri, I. Bambang, H. Sutopo, “The stability improvement of α-amylase enzyme from Aspergillus fumigatus by immobilization on a bentonite matrix”. Biochemistry research international, 2022, vol. 2022. https://doi.org/10.1155/2022/3797629
  • T. Kanokpan, P. Pongsuda, J. Vitchuporn, W. Patjaraporn, “Isolation, preliminary enzyme characterization and optimization of culture parameters for production of naringinase isolated from Aspergillus niger BCC 25166”. Agriculture and Natural Resources, 2008, vol. 42, no. 1, pp. 61-72.
  • M. D. Busto, V. Meza, N. Ortega, M. Perez-Mateos,”Immobilization of naringinase from Aspergillus niger CECT 2088 in poly(vinyl alcohol) cryogels for the debittering of juices”. Food Chemistry, 2007, vol. 104(3), pp.1177-182. https://doi.org/10.1016/j.foodchem.2007.01.033.525
  • N. R. Barbagallo, G. Spagna, R. Palmeri, C. Restuccia, P. Giudici, “Selection, characterization, and comparison of β-glucosidase from mould and yeasts employable for enological applications”, Enzyme and Microbial Technology, 2004, vol. 35(1), pp.58-66. https://doi.org/10.1016/j.enzmictec.2004.03.005
  • G. Singla, P. Panesar, R. Sangwan, K. Meena, “Enzymatic Processing of Citrus Reticulata (Kinnow) Pomace Using Naringinase and Its Valorization through Preparation of Nutritionally Enriched Pasta”. Journal of Food Science and Technology, 2021, vol. 58(10), pp. 3853–3860. http://doi.org/10.1007/s13197-020-04846-z

Descargas

Los datos de descargas todavía no están disponibles.