Contexto tectónico de la zona volcánica del Puracé y provincia Alcalina del Valle superior del Magdalena

Contenido principal del artículo

Autores

María Luisa Monsalve
Mónica Arcila

Resumen

Conocido que la actividad sísmica de una región proporciona rasgos generales de su contexto geodinámico, este trabajo analiza eventos sísmicos en la zona del volcán Puracé, y su relación con los procesos que se producen desde el límite convergente de las placas Nazca y Suramérica. Bajo el continente, la sismicidad es difusa y no se tienen suficientes eventos para precisar una zona de Benioff. La ausencia de sismos de profundidad intermedia evidencia que la corteza oceánica que está subduciendo es joven y caliente, por lo que pierde rigidez para producir sismos y necesita poco tiempo para su asimilación en el manto. Este contexto tectónico tiene validación en el vulcanismo reciente en el valle superior del Magdalena, donde se reconocen magmas con características geoquímicas que involucran aporte mantélico en su génesis. Adicionalmente, se reporta tendencia adakítica para magmas del volcán Puracé, que estaría relacionada con una dorsal fósil en la placa subducente bajo el SW de Colombia, modelo que igualmente explicaría la provincia alcalina en el retroarco. La hipótesis propuesta reconcilia modelos termales con observaciones geoquímicas, y representa una amplia implicación para el estudio de magmatismo de arco y de la evolución termal en márgenes convergentes.

Palabras clave:

Detalles del artículo

Licencia

Los autores deben firmar y enviar la Autorización de evaluación y publicación del artículo suministrada por la Revista, en la cual se consignan todos los aspectos involucrados a los Derechos de Autor.

Todos los artículos de la Revista Ingeniería Investigación y Desarrollo son difundidos bajo la licencia Creative Commons de Atribución (BY).

Declaración de privacidad

Los nombres y direcciones de correo electrónico introducidos en esta revista se usarán exclusivamente para los fines establecidos en ella y no se proporcionarán a terceros o para su uso con otros fines.

Referencias

[1] Baranzagi, M.; Isacks, B., (1976): Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology, 4: 686-692.

[2] Barckhausen, U., Ranero, C.R., Von Huene, R., Cande, S.C., Roeser, H.A., (2001): Revised tectonic boundaries in the Cocos Plate off Costa Rica; implications for the segmentation of the convergent margin and for plate tectonic models. J. Geophys. Res., 106, pp. 19207-19220.

[3]Beate, B., Monzier, M., Spikings, R., Cotten, J., Silva, J., Bourdon, E. and Eissen, J.P., (2001): Mio-Pliocene adakite generation related to flat subduction in southern Ecuador: the Quimsacocha volcanic center. Earth Planet. Sci. Lett., 192, pp. 561-570.

[4] Borrero, C.A., y Castillo, H., (2006). Vulcanitas del S-SE de Colombia: retro-arco alcalino y su posible relación con una ventana astenosférica. Boletín de Geología, Vol 28 (2): 23-34.

[5]Bourdon, E., Eissen, J.P., Monzier, M., Robin, C., Martin, M., Cotton J. and Hall, M.L., (2002):Adakite-like lavas from Antisana volcano: evidence for slab melt metasomatism beneath the Andean Northern Volcanic Zone. J. Petrol., 43, pp. 199-217.

[6] Bourdon, E., Eissen, J.P., Gutscher, M-A., Monzier, M., Hall, M.L. and Cotton, J., (2003): Magmatic response to early aseismic ridge subduction: the Ecuatorian margin case (South America). Earth Planet. Sci. Lett., 205, pp. 123-138.

[7] Bourgois, J. and Michaud, F., (2001): Late miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of east pacific rise subduction below southern Baja California Geology, 29: 531-534.

[8] Case, J., Duran, S., López, R., Moore, W., (1971): Tectonic investigations in western Colombia and eastern Panama. Bull. Geol. Soc. Am., 82, pp.2685-2712.

[9] Davaillea, A. and Jonathan, M.L., (2004). Thermal modeling of subducted plates: tear and hotspot at the Kamchatka corner. Earth Planet. Sci. Lett., 226 -304.

[10] Defant, M.J. and Drummond, M.S., (1990): Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, pp. 662-665.

[11]Droux, A. and Delaloye, M., (1996): Petrography and geochemistry of plio-quaternary calc-alkaline volcanoes of southwestern Colombia. J. South Am. Earth Sci., 9, pp. 27-41.

[12]Engdahl. E.R., Van Der List, R.D. and Buland, R., (1998): Global teleseismic earthquake relocation with improved travel times and procedures for depth relocation. Bull. Seism. Soc. Am., 88: 722-743.

[13]Francis, P., Moorbath, S. and Thorpe, R., (1977): Strontium isotope data for recent andesites in Ecuador and north Chile. Earth Planet. Sci. Lett., 37: 197-202.

[14]GEBCO_08 Grid, version (2009/2002): Disponible en: http://www.gebco.net.

[15] Goberna, J.R., 1981:Investigaciones geofísicas sobre las estructuras océano-continentales del occidente colombiano. Instituto Geofísico - Universidad Javeriana. Bogotá, pp. 138.

[16] Gutscher, M.A., Malavieille, J., Lallemand, S. and Collot, J.Y., (1999). Tectonic segmentation of the north Andean margin. Impact of the Carnegie ridge collision. Earth Planet. Sci. Lett., 168, pp. 255-270.

[17]Gutscher, M.A., Spakman, W., Bijwaard, H. and Engdahl, E.R., (2000): Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin. Tectonics, 19 (5), pp. 814-833.

[18] Hall, M., Wood, C., (1985): Volcano-tectonic segmentation of the northern Andes. Geology, 13, pp. 203-207.

[19] Harmon, R.S., Barreiro, B.A., Moorbath, S., Hoefs, J., Francis, P.W., Thorpe, R.S., Déruelle, B., McHugh, J. and Viglino, J.A., (1984): Regional O-, Sr-, and Pbisotope relationships in late cenozoic calc-alkaline lavas of the Andean cordillera. J. Geol. Soc. London, 141, pp. 803-822.

[20] Hawkesworth, C.J., Norry, M.J., Roddick, J.C., Baker, P.E., Francis, P.W. and Thorpe, R.S., (1979): 143Nd/144Nd, 87Sr/86Sr, and incompatible element variations in calc-alkaline andesites and plateau lavas from south America. Earth Planet. Sci. Lett., pp. 42 -57.

[21] James, D.E., (1982): A combined O, Sr, Nd, and Pb isotopic and trace element study of crustal contamination in central Andean lavas. I. Local geochemical variations, Earth Planet. Sci. Lett., 57, pp. 47-62.

[22] James, D.E. and Murcia, L.A., (1984): Crustal contamination in northern Andean volcanics. J. Geol. Soc. Lond., 141, pp. 823-830.

[23] Kay, S.M., Ramos, V.A. and Márquez, M., (1993). Evidence in Cerro Pampa volcanic rocks for slabmelting prior to ridge-trench collision in southern South America. J. Geol., 101, pp. 703-714.

[24] Kay, S.M., Godoy, E. and Kurtz, A., (2005). Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol. Soc. Am. Bull., 117, pp. 67-88.

[25] Kroonemberg, S., Leon, L., Pastana, J. y Pessoa, M., (1981): Ignimbritas pliopleistocénicas en el suroeste del Huila, Colombia, y su influencia en el desarrollo morfológico. Rev. CIAF, 6, pp. 293-314.

[26] Kroonemberg, S., Pichler, H. and Diederix, H., (1982): Cenozoic alkalibasaltic to ultrabasic volcanism in the uppermost Magdalena valley, southern Huila department, Colombia. Geología Norandina 5, pp. 19-26.

[27] Kroonemberg, S., Pichler, H. and Schmitt-Riegraf, C., (1987). Young alkali-basaltic to nephelinitic volcanism in the southern Colombian Andes-origin by subduction of a spreading rift? Zbl. Geol. Paläont., 1, pp. 919-936.

[28]Le Bas, M.J., Le Maitre, R.W., Streckeinsen, A. and Zannettin, B., (1986): A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology. 27, pp. 745-750.

[29] Marriner, G.F. and Millward, D., (1984): Petrochemistry of cretaceous to recent volcanism in Colombia. J. Geol. Soc. London, 141, pp. 473-486.

[30] Martin, H., (1986): Effect of steeper archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14, pp. 753-756.

[31] Martin, H., (1999). Adakitic magmas: modern analogues of archaean granitoids. Lithos, 46: 411-429.

[32] Miyashiro, A., (1978): Nature of alkalic volcanic rock series. Contrib. Mineral. Petrol., 66: 91-104.

[33] Monsalve, M.L., (2000): Catálogo de volcanitas neógenas de Colombia. Formación Coconucos. Ingeominas, p. 31.

[34] Monsalve, M.L., Correa, A.M. y Arcila, M., (2009): Firma adakítica en los productos recientes de los volcanes.

[35]Monsalve, M.L. y Pulgarín, B., (1993): Mapa preliminar de amenaza volcánica potencial del volcán Puracé. Rev. Ingeominas, 2, pp. 3-27.

[36] Monsalve, M.L. y Pulgarín, B., (1999): Cadena volcánica de los Coconucos (Colombia), centros eruptivos y productos recientes. Boletín Geológico Ingeominas, 37, pp. 17-51.

[37] Muñoz, E.F., (2008): Informe final actividades orden prestación de servicio BTA-121/08. Proyecto Cartografía geológica en el vulcanismo del SW de Colombia. Ingeominas, Popayán, p. 26.

[38] Murcia, L.A., (1982): El vulcanismo plio-cuatemario de Colombia: depósitos piroclásticos asociados y mediciones isotópicas de 87Sr/86Sr, 143Nd/144Nd y 18O en lavas de los volcanes Galeras, Puracé y Nevado del Ruiz. Publ. Geol. Esp. Ingeominas, 10, pp. 3-17.

[39]Peacock, S. M., (1990): Fluid processes in subduction zones. Science, 248, pp. 329-337.

[40]Peccerillo, A. and Tayor, S.R., 1976: Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol., 58, pp. 63-81.

[41] Pennington, W., (1981): Subduction of the Eastern Panama basin and sismotectonics of norwestern south America. J. Geophys. Res., 86, pp. 10753-10770.

[42] Polat, A. y Kerrich, R., (2001): Magnesian andesites, Nbenriched basalt-andesites, and adakites from latearchean 2,7 ga wawa greenstone belts, superior province Canada: implications for late archean subduction zone petrogenetic processes. Contrib. Mineral. Petrol., 141,pp. 36-52.

[43] Ramírez, J.E., Aldrich, L.T., 1977: La transición océanocontinente en el suroeste de Colombia. Instituto Geofísico - Universidad Javeriana. Bogotá, p. 313.

[44] Ramos, V.A., (1999): Plate tectonic setting of the Andean cordillera. Episodes, 22, pp. 183-190.

[45] Robin, C., Hall, M., Jimenez, M., Monzier, M. and Escobar, P., (1997): Mojanda volcanic complex (Ecuador): Development of two adjacent Contexto tectónico de la zona volcánica del Puracé y Provincia Alcalina del valle superior del Magdalena I+D2 40 No. (8), Vol. 8, No. 1, Julio de 2009 contemporaneous volcanoes with contrasting eruptive styles and magmatic suites. J. South Am. Earth Sci., 10, pp. 345-359.

[46] Sajona, F. G., Bellon, H., Maury, R. C., Pubellier, M., Cotton, J. y Rangin, C., (1994): Magmatic response to abrupt changes in tectonic setting: Pliocenequaternary calalkaline lavas and Nb-enriched basalts o f Le y t e a n d Mi n d a n a o (Ph ili p p i n e s). Tectonophysics, 237, pp. 47-72.

[47] Samaniego, P., Monzier, M., Robin, C. and Hall, M.L., (1998): Late holocene eruptive activity at Nevado Cayambe Volcano, Ecuador. Bull. Volc., 59: 451-459 Samaniego, P., Martin, H., Robin, C. and Monzier, C.M., (2002). Transition from calcalkalic to adakitic magmatism at Cayambe volcano, Ecuador: insights into slab melts and mantle wedge interactions. Geology, 30: 967-970 Samaniego, P., Martin, H., Monzier, M., Robin, C., Fornari, M., Eissen J.P. and Cotton, J., (2005). Temporal evolution of magmatism in the northern volcanic zone of the Andes: the geology and petrology of Cayambe volcanic complex (Ecuador). J. Petrol., 46, pp. 2225-2252.

[48] Schmitt, C., (1983): Young volcanism in the cordillera ranges of southern Colombia. Zbl. Geol. Palaont. Teil I, 3/4: 318-328 Schmidt, M.W. and Poli, S., (1998). Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett., 163, pp. 361-379.

[49] Stern C.R. and Kilian R., (1996): Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean austral volcanic zone, Contrib. Mineral, Petrol., 123, pp. 263- 281.

[50] Tello, H. y Hernández, T., (1976): Investigación geológica en el Parque Arqueológico de San Agustín (Huila), Tesis grado, U. Nal., Bogotá, p. 30.

[51] Thorpe, R. S. and Francis, P. W., (1979): Variations in Andean andesite compositions and their petrogenetic significance. Tectonophysics, 57: 53-70 Thorpe, R.S., Francis, P.W., Hammill, M. and Baker, M.C.W., (1982), The Andes, In, R. S.

[52] Thorpe (Ed.), Andesites: orogenic andesites and related rocks, John Wiley and Sons, Chichester, UK, pp. 187- 205.

[53] Thorkelson, D. J. and Breitsprecher, K., (2005): Partial melting of slab window margins: genesis of adakitic and non-adakitic magmas. Lithos, 79, pp. 25-41.

[54] Torres, P., Monsalve, M.L., Pulgarín, B. y Cepeda, H., (1999): Caldera de Paletará: aproximación a la fuente de las ignimbritas del Cauca y Huila (Colombia). INGEOMINAS, Bol. Geol., 37, pp. 1-15.

[55] Van Keken, P.E., (2003): The structure and dynamics of the mantle wedge. Earth Planet. Sci. Lett., 215, pp. 323-338.

[56] Velandia, F., Núñez, A. y Marquínez, G., (2001): Mapa geológico del departamento del Huila. Escala 1:300.000. Memoria explicativa. Ingeominas, Bogotá, p. 153.

[57] Wyllie, P. J., (1979): Magmas and volatile components. Am. Mineral., 64, pp. 469-500.

[58] Yogodzinski, G.M., Kay, R.W., Volynets, O.N., Koloskov, A.V. and Kay, S.M., (1995). Magnesian andesite in the western aleutian komandorsky region: Implications for slab melting and processes in the mantle wedge. Geol. Soc. Am. Bull., 107, pp. 505-519.

[59] Zhang, H., Niu, H., Sato, H., Yu, X., Shan, Q., Zhang, B., Ito, J. and Nagao, T., (2005). Late paleozoic adakites and Nb-enriched basalts from northern Xinjiang, northwest China: evidence for the southward subduction of the paleo-asian oceanic plate. The Island Arc, 14, pp. 55-68.

Descargas

La descarga de datos todavía no está disponible.