Skip to main navigation menu Skip to main content Skip to site footer

Selection of a mathematical model through the AHP methodology to model green roofs in Colombia

Abstract

Green roofs (GR) are engineering structures that stores rainwater as an alternative for urban stormwater management. This research is carried out to select a mathematical model to simulate the experimental TV dynamics from Bogotá, improving the decision-making process regarding GR real implementation in intertropical urban areas of Colombia that considers meteorological, substrate and design variables. A hierarchical analytical method (AHP) is used to select the model for simulating GR. The AHP is a matrix technique that allows a decision-making process based on expert criteria in order to decrease the bias of subjectivity during the assessment. First, a bibliographic review is made to identify GR models to be evaluated: SWAM, SWMM 5.1, HYDRUS 1-D, SWAP, SWMS 2-D, MIKE URBAN, WinSLAMM and SUSTAIN. Then, each model performance is qualified with respect to the selection criteria (Input data, attributes, and output). The value judgments issued by the experts are used to develop paired matrices with the AHP methodology to obtain the model that best meets the selection criteria. The model EPA-SWMM 5.1 is found to comply with the proposed requirements for modeling GR in Colombia. SWMM is a free software that has a SUDS module and allows continuous events simulation, among other variables. A hierarchical list is developed for other modeling user ́s decision according to their GR modeling needs.

Keywords

Runoff, AHP methodology, mathematical modeling, green roofs

Supplementary File(s)

pdf (Español)

Author Biography

Jeniffer Tabares Catimay

 

 

 

Laura Marely Gallo Martínez

 

 

 

Néstor Alonso Mancipe

 

 

 


References

M. Molina, L. Gutiérrez, and J. Salazar, “Sistema Urbanos de Drenaje Sostenible,” Ambient. Secr. Dist. Medio, 2011.

A. Torres, S. Méndez-Fajardo, Á. P. Gutiérrez Torres, and S. Sandoval, “Quality of Rainwater Runoff on Roofs and Its Relation to Uses and Rain Characteristics in the Villa Alexandra and Acacias Neighborhoods of Kennedy, Bogota, Colombia,” J. Environ. Eng., 2013.

B. Woods-Ballard, R. Kellagher, P. Martin, C. J. R. Bray, and P. Shaffer, The SUDS manual - UK. 2007.

D. Butler and J. Davies, Urban Drainage. 2011.

J. Niemczynowicz, “Urban hydrology and water management – present and future challenges,” Urban Water, 1999.

N. Oviedo and A. Torres, “Hydric Attenuation and Hydrological Benefits for Implementing Productive Green Roof in Soacha, Colombia,” Ing. y Univ., 2014.

H. F. Castletona, V. Stovinb, S. B. M. Beckc, and J.B. Davisonb, “Green roofs; building energy savings and the potential for retrofit,” Energy Build., 2010.

T. L. Saaty and J. Wiley, “Proceso De Análisis Jerárquico (Ahp),” Rev. Digit. UMMSM, 2009.

T. Sangkakool, K. Techato, R. Zaman, and T. Brudermann, “Prospects of green roofs in urban Thailand – A multicriteria decision analysis,” J. Clean. Prod., 2018.

L. Katherine, O. Rojas, L. Fernanda, and B. Chimbi, “Análisis exploratorio de modelos para la estimación de la contaminación por cargas difusas en un área de estudio con información escasa.”

Juan C. Osorio y Juan P. O, “El Proceso De Análisis Jerárquico (Ahp) Y La Toma De Decisiones Multicriterio. Ejemplo De Aplicación.,” Sci. Tech., 2008.

J. Moreno, “El Proceso Analítico Jerárquico ( AHP). Fundamentos, metodología y aplicaciones,” Univ. Zaragoza, 2002.

G. B. Toskano hurtado, “El proceso de análisis jerarquico (AHP) como herramienta para la toma decisiones en la selección de proveedores”, 2005.

S. S. Cipolla, M. Maglionico, and I. Stojkov, “A longterm hydrological modelling of an extensive green roof by means of SWMM,” Ecol. Eng., 2016.

R. Hakimdavar, P. J. Culligan, A. Guido, and W. R. McGillis, “The Soil Water Apportioning Method (SWAM): An approach for long-term, low-cost monitoring of green roof hydrologic performance”, Ecol. Eng., vol. 93, pp. 207–220, Aug. 2016.

J. G. Kroes, J. G. Wesseling, and J. C. Van Dam, “Integrated modelling of the soil-water-atmosphere-plant system using the model SWAP 2.0 an overview of theory and an application,” in Hydrological Processes, 2000.

J. Wesseling, J. G. Kroes, and K. Metselaar, “Global sensitivity analysis of the Soil-Water-Atmosphere-Plant (Swap) model,” Wageningen, SC-DLO, 1998. Rep. 160, 70 pp, 1998.

L. Locatelli, O. Mark, P. S. Mikkelsen, K. Arnbjerg-Nielsen, M. Bergen Jensen, and P. J. Binning, “Modelling of green roof hydrological performance for urban drainage applications,” J. Hydrol., 2014.

K. Alfredo, F. Montalto, and A. Goldstein, “Observed and Modeled Performances of Prototype Green Roof Test Plots Subjected to Simulated Low and High-Intensity Precipitations in a Laboratory Experiment,” J. Hydrol. Eng., 2010.

E. Burszta-Adamiak and M. Mrowiec, “Modelling of Green roofs’ hydrologic performance using EPA’s SWMM,” Water Sci. Technol., 2013.

A. Palla and I. Gnecco, “Hydrologic modeling of Low Impact Development systems at the urban catchment scale,” J. Hydrol., 2015.

A. Bonoli, A. Conte, M. Maglionico, and I. Stojkov, “Green roofs for sustainable water management in urban areas,” Environ. Eng. Manag. J., 2013.

G. Krebs, T. Kokkonen, M. Valtanen, H. Setälä, and H. Koivusalo, “Spatial resolution considerations for urban hydrological modelling,” J. Hydrol., 2014.

P. A. Versini, D. Ramier, E. Berthier, and B. de Gouvello, “Assessment of the hydrological impacts of green roof: From building scale to basin scale,” J. Hydrol., 2015.

R. Hakimdavar, P. J. Culligan, M. Finazzi, S. Barontini, and R. Ranzi, “Scale dynamics of extensive green roofs: Quantifying the effect of drainage area and rainfall characteristics on observed and modeled green roof hydrologic performance,” Ecol. Eng., 2014.

R. N. Hilten and T. M. Lawrence, “Using green roofs and other BMPs to reduce the need for stormwater retention capacity requirements,” in Low Impact Development: New and Continuing Applications - Proceedings of the 2nd National Low Impact Development Conference 2007, 2008.

A. Palla, I. Gnecco, and L. G. Lanza, “Compared performance of a conceptual and a mechanistic hydrologic models of a green roof,” Hydrol. Process., 2012.

H. peng Qin, Y. nuan Peng, Q. ling Tang, and S. L. Yu, “A HYDRUS model for irrigation management of green roofs with a water storage layer,” Ecol. Eng., 2016.

A. Palla, I. Gnecco, and L. G. Lanza, “Unsaturated 2D modelling of subsurface water flow in the coarse-grained porous matrix of a green roof,” J. Hydrol., 2009.

R. Pitt and J. Voorhees, “The use of WinSLAMM to evaluate the benefits of low impact development.,” Proceedings of the Low Impact Development Conference: Putting the LID on SWM, College Park, MD, USA. pp. 1–2, 2004.

C. F. Chen, M. Y. Sheng, C. L. Chang, S. F. Kang, and J. Y. Lin, “Application of the SUSTAIN model to a watershedscale case for water quality management,” Water (Switzerland), 2014.

A. Abbas et al., “Modelling data of an urban drainage design using a Geographic Information System (GIS)database,” J. Hydrol., 2019.

O. US EPA, “Storm Water Management Model (SWMM),” 2018.

D. J. Rosa, J. C. Clausen, and M. E. Dietz, “Calibration and Verification of SWMM for Low Impact Development,” J. Am. Water Resour. Assoc., 2015.

Z. Peng and V. Stovin, “Independent Validation of the SWMM Green Roof Module,” J. Hydrol. Eng., 2017.

U. S. D. of A. (USDA), “SWMS-2D Model : USDA ARS,” 2016. [Online]. Available: https://www.ars.usda.gov/pacific-west-area/riverside-ca/us-salinity-laboratory/docs/swms-2d-model/. [Accessed: 13-Dec-2018].

B. Tomicic and H. S. Andersen, “Storm Water Runoff from Green Urban Areas Modellers’ Guideline,” Melbourne, Australia, 2015.

M. Just Kjølby, “Modellering af LAR anlaeg samt modellering af stoffjernelse i LAR anlaeg og bassiner Background & Objective.”

P. & Associates, “WinSLAMM User’s Guides.” [Online]. Available: http://www.winslamm.com/select_documentation.html. [Accessed: 09-Dec-2018].

O. US EPA, “System for Urban Stormwater Treatment and Analysis Integration (SUSTAIN),” 2016.

Downloads

Download data is not yet available.