Skip to main navigation menu Skip to main content Skip to site footer

Identification and quantification of potential wave energy in the coast of Atlántico state in Colombia

Abstract

This paper describes the progress regarding the identification and quantification of potential wave energy in Atlántico state coast. The used methodology will serve as a starting point to establish the energetic potential in Colombia in this energy. The theoretical energetic potential estimated at the near shore in the Atlantic coast waves is approximately 1107 MW and this was possible with data that has been collected and processed since January 2016. We applied equations that take into account variables such as: significant wave height, period, sea water density, temperature and wind speed in the area. Also it is shown the progress of the near shore system design for the verification of the wave energetic potential consisting of a device which transforms kinetic energy of the sea waves into gravitational potential energy that is going to be used to move an alternating current generator.

Keywords

Wave energy, significant wave height, wave period, wave power potential, oceanographic buoy, wave front, point absorbers, on shore, near shore, off shore

PDF (Español)

References

  1. J. Brooke, Wave Energy Conversion. Annapolis: Elsevier Science Ltd., 2003.
  2. CIoh. org (2017). CIOH Oceanografía Operacional 2017. [En línea]. Available: https://www.cioh.org. co/meteorologia/index.php.
  3. J. Muñoz, “Ondas regulares y su aplicación a la ingeniería de costas. Cádiz, ES: Publicaciones de la Universidad de Cádiz, 2011, p. 2.
  4. M. McCormick and C. Ertekin, “Renewable sea power”, Renew. Energy, vol 131, pp. 36-45, 2009. DOI: https://doi.org/10.1115/1.2009-MAY-4
  5. K. Gunn and C. Stock-Williams, “Quantifying the global wave power resource”, Renew. Energy, vol. 44, pp. 296–304, 2012. doi: https://doi.org/10.1016/j.renene.2012.01.101 DOI: https://doi.org/10.1016/j.renene.2012.01.101
  6. Madrimasd.org (s.f.). Ciencias marinas y otros asuntos. [En línea]. Disponible: http://www.madrimasd. org/blogs/ciencia_marina/2007/08/20/72161
  7. L. Duckers, “Wave energy ; crests and troughs”. Renewable Energy. vol 5, pp 1444-1452, agosto, 1994. DOI: https://doi.org/10.1016/0960-1481(94)90186-4
  8. Medclic (s.f.). Infraestructuras fijas. [En línea]. Disponible: http://www.medclic.es/es/instrumentos/ infraestructuras-fijas/
  9. J. Engstrom, “Hydrodynamic Modelling for a point Absorbing Wave Energy Converter,” Digit. Compr. Summ. Uppsala Diss. from Fac. Sci. Technol., vol. 878, 2011.
  10. Earthprotect (s.f.). Blue Energy - Ocean Power (Piston Pump & Racks). [En línea]. Disponible: http://www.earthprotect.com/index.php/media-gallery/mediaitem/3067-blue-energy-oceanpower-piston-pump-racks.
  11. Aula Virtual (s.f.). Proyecto fin de carrera Ingenieria Química. [En línea]. Disponible: http://www.ugr. es/~aulavirtualpfciq/Bbombasytuberias.html.
  12. A. Khaligh y O.C. Onar, “Chapter 4. Ocean Wave Energy Harvesting”, Energy Harvesting, A. Emadi, Ed. CRC Press2010: Boca Raton FL, 2010, pp. 223303.
  13. A. F. d. O. Falcão, “Wave Energy Utilization: A Review of the Technologies”, Renewable and Sustainable Energy Reviews, vol no 14, pp.899-918,abril,2010. doi: https://doi.org/10.1016/j.rser.2009.11.003 DOI: https://doi.org/10.1016/j.rser.2009.11.003
  14. Boreau of Ocean Energy Management BOEM. (s.f.). Ocean wave energy. [En Línea]. Disponible: https://www.boem.gov/Ocean-Wave-Energy/
  15. J. Twidell y T. Weir, Renowable Energy Resources, third edition Routledge: NY, 2015, pp. 408-434. DOI: https://doi.org/10.4324/9781315766416

Downloads

Download data is not yet available.