Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

La construcción de indicadores de la actividad económica: una revisión bibliográfica

Resumen

Los indicadores de actividad económica son utilizados para medir el comportamiento de una economía cuando ningún otro tipo de indicador, como el producto interno bruto, puede proporcionar información sobre el estado de la economía de forma actualizada. En este documento se realiza una revisión de la literatura nacional e internacional sobre la construcción de indicadores de actividad económica. Adicionalmente, se ofrece un resumen de la metodología más utilizada en la construcción de índices de actividad económica, el modelo factorial dinámico (MFD) y sus diferentes tipos de estimación, resaltando las ventajas y desventajas.  Finalmente, se presenta el método utilizado en la construcción del índice mensual de actividad económica para el Valle del Cauca (IMAE).

Palabras clave

indicador de actividad económica, Modelo Factorial Dinámico.

HTML PDF

Biografía del autor/a

Lya Paola Sierra Suárez

Lya Paola Sierra

Doctora en Economía de la Universidad Autónoma de Madrid.

Master en Economía Internacional de la Universidad Autónoma de Madrid.

Maestría en Economía de la Universidad Javeriana, Bogotá.

Profesora Asociada del Departamento de Economía de la Universidad Javeriana, Cali.

Investigadora Asociada, clasificación Colciencias.

Coordinadora del grupo de investigación Competitividad y Desarrollo

Jaime Andrés Collazos-Rodríguez

Economista del Centro Regional de Estudios Económicos (CREE) del Banco de la República, Cali.

Johana Sanabria-Domínguez

Economista del Centro Regional de Estudios Económicos (CREE) del Banco de la República, Cali.

Pavel Vidal-Alejandro

Doctor en Economía de la Universidad de la Habana.

Profesor Asociado del Departamento de Economía. Pontificia Universidad Javeriana, Cali.  

Investigador Junior, clasificación e Colciencias.


Referencias

  1. Alfonso, V., Arango, L., Árias, F., Cangrejo G. & Pulido, J. D. (2012). Ciclos de negocios en Colombia: 1975-2011. Banco de la República. Borradores de Economía, (651).
  2. Alonso, J. (2006). Proyectando el producto departamental bruto caucano con un modelo de análisis factorial dinámico. Cali, Colombia: Centro de Investigaciones en Economía y Finanzas (CIENFI), Universidad ICESI.
  3. Angelini, E., Banbura, M. & Rünstler, G. (2008). Estimating and Forecasting the Euro Area Monthly National Accounts from a Dynamic Factor Model. Journal of Business Cycle Measurement and Analysis, (953). DOI: https://doi.org/10.2139/ssrn.1282045
  4. Arango, L., Árias, F., Flórez, L. A. & Jalil, M. (2008). Cronología de los ciclos de negocios recientes en Colombia. Lecturas de Economía, (68), 9-37.
  5. Arango, L.E. & Melo, L.F. (2006). Expansions and Contractions in Brazil, Colombia and Mexico: A View Through Nonlinear Models. Journal of Development Economics, (80), 501-517. Retrieved from https://doi.org/10.1016/j.jdeveco.2005.02.010 DOI: https://doi.org/10.1016/j.jdeveco.2005.02.010
  6. Aruoba, B. Diebold, F. & Scotti, Ch. (2009). Real-Time Measurement of Business Conditions. Journal of Business & Economic Statistics, 27(4), 417–27. Retrieved from https://doi.org/10.1198/jbes.2009.07205 DOI: https://doi.org/10.1198/jbes.2009.07205
  7. Avella, M.. & Fergusson, L. (2004). El ciclo económico: enfoques e ilustraciones. Los ciclos económicos de Estados Unidos y Colombia. Banco de la República. Borradores de Economía, (284). DOI: https://doi.org/10.32468/be.284
  8. Burns, A. F. & W. C. Mitchell (1946). Measuring Business cycles. In NBER, Studies in Business Cycle. New York: Columbia University Press.
  9. Camacho, M.. & Domenech, R. (2012). MICA-BBVA: A Factor Model of Economic and Financial Indicators for Short-term GDP Forecasting. SERIEs, 3, 475–497. Retrieved from https://doi.org/10.1007/s13209-011-0078-z DOI: https://doi.org/10.1007/s13209-011-0078-z
  10. Camacho, M. & Martínez-Martin, J. (2015). Monitoring the World Business Cycle. Banco de España, Working Paper, (1509). Retrieved from https://doi.org/10.1016/j.econmod.2015.09.013, https://doi.org/10.2139/ssrn.2643954, https://doi.org/10.2139/ssrn.2587001 DOI: https://doi.org/10.2139/ssrn.2643954
  11. Camacho, M. & Pérez-Quirós, G. (2010). Introducing the Euro-STING: Short Term Indicator of Euro Area Growth. Journal of Applied Econometrics, 25(4), 663-694. Retrieved from https://doi.org/10.1002/jae.1174 DOI: https://doi.org/10.1002/jae.1174
  12. Camacho, M., Pérez-Quirós, G. & Poncela, P. (2014). Green shoots and double dips in the euro area: A real time measure. International Journal of Forecasting, 30(3), 520-535. https://doi.org/10.1016/j.ijforecast.2013.01.006 DOI: https://doi.org/10.1016/j.ijforecast.2013.01.006
  13. Castro, C. (2003). Yet Another Lagging, Coincident Tan Leading Index for the Colombian Economy. Departamento Nacional de Planeación. Archivos de Economía, (233).
  14. Choi, H. & Varian, H. (2011). Predicting the Present with Google Trends. The Economic Society of Australia. Economic Record, 87(1).
  15. Doz, C., Giannone, D. & Reichlin, L. (2011). A Two-Step Estimator for Large Approximate Dynamic Factor Models based on Kalman filtering. Journal of Econometrics, 164(1), 188-205. Retrieved from https://doi.org/10.1016/j.jeconom.2011.02.012 DOI: https://doi.org/10.1016/j.jeconom.2011.02.012
  16. Diebold, F.X. & Rudebusch, G. (1996). Measuring Business Cycles: A Modern Perspective, Review of Economics and Statistics, 78, 67-77. Retrieved from https://doi.org/10.2307/2109848 DOI: https://doi.org/10.2307/2109848
  17. Drechsel, K., Giesen, S. & Lindner, A. (2014). Outperforming IMF Forecasts by the Use of Leading Indicators. Institute for Economic Research. IWH Discussion Papers, (4).
  18. Ferrara, L. & Marsilli, C. (2014). Nowcasting Global Economic Growth: A Factor-Augmented Mixed-Frequency Approach. Banque de France, (515). retrieved from https://doi.org/10.2139/ssrn.2514218 DOI: https://doi.org/10.2139/ssrn.2514218
  19. Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2000). The Generalized Factor Model: Identification and Estimation. The Review of Economics and Statistics, 82(4), 540-554. Retrieved from https://doi.org/10.1162/003465300559037 DOI: https://doi.org/10.1162/003465300559037
  20. Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2003). The Generalized Dynamic Factor Model: One-sided Estimation and Forecasting. Econpapers. Retrieved from http://econpapers.repec.org/paper/ssalemwps/2003_2f13.htm
  21. Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2005). The Generalized Dynamic Factor Model. Journal of the American Statistical Association, 100(471). Retrieved from https://doi.org/10.1198/016214504000002050 DOI: https://doi.org/10.1198/016214504000002050
  22. Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2001). Coincident and Leading Indicators for the Euro Area. The Economic Journal, 111. Retrieved from https://doi.org/10.1111/1468-0297.00620 DOI: https://doi.org/10.1111/1468-0297.00620
  23. Giannone, D., Reichlin, L. & Small, D. (2008). Nowcasting: The Real-Time Informational Content of Macroeconomic Data. Journal of Monetary Economics, 55(4), 665-676. Retrieved from https://doi.org/10.1016/j.jmoneco.2008.05.010 DOI: https://doi.org/10.1016/j.jmoneco.2008.05.010
  24. Golinelli, R. & Parigi, G. (2014). Tracking World Trade and GDP in Real Time. International Journal of Forecasting, 30(4), 847-862. Retrieved from https://doi.org/10.1016/j.ijforecast.2014.01.008 DOI: https://doi.org/10.1016/j.ijforecast.2014.01.008
  25. Gómez, A.M., Sarmiento, J.I. & Fajardo, L. (2016). Advanced Global Indicator of Short and Long Term for the Economy of Cauca 1960-2014. Apuntes del Cenes, 35(62), 209-244. Retrieved from https://doi.org/10.19053/22565779.5231 DOI: https://doi.org/10.19053/22565779.5231
  26. Hamilton, J. (1994). Time Series Analysis. Princeton, USA: Princeton University Press. DOI: https://doi.org/10.1515/9780691218632
  27. Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Fluids Engineering, 82(1). Retrieved from https://doi.org/10.1115/1.3662552 DOI: https://doi.org/10.1115/1.3662552
  28. Kamil, H., Pulido, J. & Torres, J. (2010). El IMACO: un índice mensual líder de la actividad económica de Colombia. Banco de la República. Borradores de Economía, (609). DOI: https://doi.org/10.32468/be.609
  29. Kim, M. & Yoo, J. (1995). New Index of Coincident Indicators: A Multivariate Markov Switching Factor Model Approach. Journal of Monetary Economics, 36, 607-630. Retrieved from https://doi.org/10.1016/0304-3932(95)01229-X DOI: https://doi.org/10.1016/0304-3932(95)01229-X
  30. Koopman, S. J., Shephard, N. & Doornik, J. A. (1999). Statistical Algorithms for Models in State Space Uuing SsfPack 2.2. The Econometrics Journal, 2(1), 107-160. Retrieved from https://doi.org/10.1111/1368-423X.00023 DOI: https://doi.org/10.1111/1368-423X.00023
  31. Litterman, R.B. (1983). A Random Walk, Markov Model for the Distribution of Time Series. Journal of Business and Economic Statistics, 1, 169-173. Retrieved from https://doi.org/10.1080/07350015.1983.10509336, https://doi.org/10.2307/1391858 DOI: https://doi.org/10.1080/07350015.1983.10509336
  32. Marcillo, E. (2013). Un indicador líder para la actividad económica de Colombia. Departamento Nacional de Planeación. Archivos de Economía, (404).
  33. Maurer, M.. & Uribe, M.C. (1996a). El ciclo de referencia de la economía colombiana. Departamento Nacional de Planeación. Archivos de Macroeconomía, (45).
  34. Mejía, L. F., Monsalve, D., Parra., Pulido, S. & Reyes, A. M. (2013). Indicadores ISAAC: siguiendo la actividad sectorial a partir de Google Trends. Notas Fiscales, Ministerio de Hacienda y Crédito Público, (22).
  35. Melo, L. F., Nieto, F., Posada, C. E., Betancourt, Y. R. & Barón, J. D. (2001). Un índice coincidente para la actividad económica colombiana. Borradores de Economía, (195).
  36. Melo, L., Nieto, F. & Ramos, M. (2003). A Leading Index for the Colombian Economic Activity. Banco de la República de Colombia. Borradores de Economía, (243).
  37. Nieto, F. & Melo, L.F. (2001). About a Coincident Index for the State of the Economy. Documento no publicado. DOI: https://doi.org/10.32468/be.194
  38. Poncela, P., Senra, L. & Sierra, L. (2014). Common Dynamics of Non Energy Commodity Prices and their Relation to Uncertainty. Applied Economics. 46(30), 3724–3735. Retrieved from https://doi.org/10.1080/00036846.2014.939377 DOI: https://doi.org/10.1080/00036846.2014.939377
  39. Poncela, P. & Ruiz, E. (2012). More is not Always Better: Back to the Kalman Filter in Dynamic Factor Models. Madrid: Universidad Carlos III de Madrid, Departamento de Estadística.
  40. Ripoll, M., Misas, M. & López, E. (1995). Una descripción del ciclo industrial en Colombia. Banco de la República. Borradores Semanales de Economía, (33). DOI: https://doi.org/10.32468/be.33
  41. Rozo, S. (2008). Nuevo enfoque para la construcción de un único indicador líder de la actividad económica colombiana. Ministerio de Hacienda y Crédito Público. Coyuntura Económica, 38(2), 21-62.
  42. Salazar, D. (1996). Gráfico de un sistema de indicadores adelantados y de indicadores coincidentes. M. Maurer, M. Uribe & J. Birchenall (Eds.), El sistema de indicadores líderes para Colombia (pp. 2-88). Bogotá: DNP.
  43. Schumacher, C. (2007). Forecasting German GDP using Alternative Factor Models based on Large Datasets. Journal of Forecasting, 26(4), 271-302. Retrieved from https://doi.org/10.1002/for.1026 DOI: https://doi.org/10.1002/for.1026
  44. Stock, J. & Watson, M. (1989). New Indexes of Coincident and Leading Indicators. Mimeo, Cambridge MA: Evanston. DOI: https://doi.org/10.1086/654119
  45. Stock, J. & Watson, M. (1991). A Probability Model of the Coincident Economic Indicators. In K. Lahiri & G.H. Moore (eds.). The Leading economic indicators: New approaches and forecasting record (pp. 63-90). Cambridge University Press. Retrieved from https://doi.org/10.1017/CBO9781139173735.005 DOI: https://doi.org/10.1017/CBO9781139173735.005
  46. Stock, J. H. & Watson, M. W. (2002). Forecasting Using Principal Components from a Large Number of Predictors. Journal of the American Statistical Association, 97(460), 1167-1179. Retrieved from https://doi.org/10.1198/016214502388618960 DOI: https://doi.org/10.1198/016214502388618960
  47. Stock, J. H. & Watson, M. W. (2004). Combination Forecasts of Output Growth in a Seven-Country Data Set. Journal of Forecasting, 23(6), 405-430. Retrieved from https://doi.org/10.1002/for.928 DOI: https://doi.org/10.1002/for.928
  48. Stock, J. H. & Watson, M. (2011). Dynamic factor models. Oxford Handbook on Economic Forecasting. Retrieved from https://doi.org/10.1093/oxfordhb/9780195398649.013.0003 DOI: https://doi.org/10.1093/oxfordhb/9780195398649.013.0003
  49. Vidal, P., Sierra, L., Sanabria, J. & Collazos, J. (2015). Indicador mensual de actividad económica (IMAE) para el Valle del Cauca. Banco de la República. Borradores de Economía, (900).

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

También puede {advancedSearchLink} para este artículo.