Skip to main navigation menu Skip to main content Skip to site footer

Intelligent system for weeds management in pineapple crop with precision agriculture concepts

Supporting Agencies
Universidad de los Llanos, Gobernación de Boyacá, Colciencias

Abstract

The aim of precision agriculture is to apply agricultural inputs in the right place, time and amount. The site-specific weed management is a precision agriculture strategy that allows reducing the herbicide application, minimizing inputs costs, with positive effects for the environment. The objective of this paper is to show the advances in the development of weed detection and herbicide application system for a pineapple crop, using precision agriculture concepts. The prototype uses an artificial vision system for acquisition of reflectance in plants in the visible spectrum and an embedded system that allows the image processing in real-time as a weed detection mechanism. The prototype has an automatic fumigation system, that emulates the selective herbicide application, which together is implemented above a terrestrial vehicle that travels into the pineapple crop rows. The weed detection algorithm for pineapple had an efficiency major than 80%, obtaining satisfactory outcomes and the fulfilment of the requirements for the weed detection and input application only in the places where it is necessary.

 

Keywords

Agricultural crop, detection system, pineapple, precision agriculture, weed

PDF (Español) XML (Español)

Author Biography

ANDRÉS FERNANDO JIMÉNEZ LÓPEZ

Ingeniero electrónico de la Universidad Pedagógica y Tecnológica de Colombia. Magister en Ciencias Básicas - Física de la Universidad Nacional de Colombia. Actualmente soy docente de planta de la Universidad de los Llanos, del Departamento de Matemáticas y Física de la Facultad de Ciencias Básicas e Ingeniería.


References

Abouzahir, S., Sadik, M., y Sabir, E. (2017). Iot-empowered smart agriculture: A real-time light-weight embedded segmentation system. In International Symposium on Ubiquitous Networking, Springer, Cham, May, 2017, pp. 319-332. https://doi.org/10.1007/978-3-319-68179-5_28

Abouzahir, S., Sadik, M., y Sabir, E. (2018). Enhanced Approach for Weeds Species Detection Using Machine Vision. In 2018 International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS) - IEEE, Kenitra, Morocco, 1-6. Diciembre 2018. 1-6. https://doi.org/10.1109/ICECOCS.2018.8610505
Agrawal, K. N., Singh, K., Bora, G. C., y Lin, D. (2012). Weed recognition using image-processing technique based on leaf parameters, J. Agric. Sci. Technol. B, 2(8B), 899. ISSN: 2161-6264. http://www.davidpublishing.org/show.h...

Bakhshipour, A., y Jafari, A. (2018). Evaluation of support vector machine and artificial neural networks in weed detection using shape features. Computers and Electronics in Agriculture, 145, 153-160. ISSN: 0168-1699. https://doi.org/10.1016/j.compag.2017.12.032

Barrero, O., Rojas, D., Gonzalez, C., y Perdomo, S. (2016). Weed detection in rice fields using aerial images and neural networks, In 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)- IEEE, Bucaramanga, Colombia, August, 2016, 1-4. https://doi.org/10.1109/STSIVA.2016.7743317

Bradski, G., y Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library. " O'Reilly Media, Inc.". ISBN: 978-0-596-51613-0
Brenes-Prendas, S., y Agüero-Alvarado, R. (2007). Reconocimiento taxonómico de arvenses y descripción de su manejo, en cuatro fincas productoras de piña (Ananas comosus l.) en Costa Rica. Agronomía mesoamericana, 18(2), 239-246. ISSN: 1021-7444. http://www.redalyc.org/articulo.oa?id=43718209

Di Cicco, M., Potena, C., Grisetti, G., y Pretto, A. (2017). Automatic model based dataset generation for fast and accurate crop and weeds detection, In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – IEEE, Vancouver, BC, Canada, 5188-5195, September 2017, 5188-5195. https://doi.org/10.1109/IROS.2017.8206408

Gee, C., Bossu, J., Jones, G., y Truchetet, F. (2008). Detecting crops and weeds in precision agriculture, SPIE Newsroom, 2008, https://doi.org/10.1117/2.1200809.1226

Lottes, P., Behley, J., Chebrolu, N., Milioto, A., y Stachniss, C. (2018). Joint stem detection and crop-weed classification for plant-specific treatment in precision farming, In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – IEEE, Madrid, Spain, October, 2018, 8233-8238. https://doi.org/10.1109/IROS.2018.8593678

Lottes, P., Hoeferlin, M., Sander, S., Müter, M., Schulze, P., y Stachniss, L. C. (2016). An effective classification system for separating sugar beets and weeds for precision farming applications. In 2016 IEEE International Conference on Robotics and Automation (ICRA) – IEEE, Stockholm, Sweden, May, 2016, 5157-5163. https://doi.org/10.1109/ICRA.2016.7487720

Pérez-Ortiz, M., Gutiérrez, P. A., Peña, J. M., Torres-Sánchez, J., López-Granados, F., y Hervás-Martínez, C. (2016). Machine learning paradigms for weed mapping via unmanned aerial vehicles. In 2016 IEEE symposium series on computational intelligence (SSCI) – IEEE, Athens, Greece, December, 2016, pp. 1-8. https://doi.org/10.1109/SSCI.2016.7849987

Potena, C., Nardi, D., y Pretto, A. (2016). Fast and accurate crop and weed identification with summarized train sets for precision agriculture. In International Conference on Intelligent Autonomous Systems, Springer, Cham, July, 2016, pp. 105-121. https://doi.org/10.1007/978-3-319-48036-7_9

Rehman, T. U., Zaman, Q. U., Chang, Y. K., Schumann, A. W., y Corscadden, K. W. (2019). Development and field evaluation of a machine vision based in-season weed detection system for wild blueberry, Comput. Electron. Agric., 162, 1-13. ISSN: 0168-1699. https://doi.org/10.1016/j.compag.2019.03.023

Russell, S. J., y Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia.
Sa, I., Chen, Z., Popović, M., Khanna, R., Liebisch, F., Nieto, J., y Siegwart, R. (2017). weednet: Dense semantic weed classification using multispectral images and mav for smart farming, IEEE Robotics and Automation Letters, 3(1), 588-595. ISSN: 2377-3766. https://doi.org/10.1109/LRA.2017.2774979

Sandino, J., y Gonzalez, F. (2018). A novel approach for invasive weeds and vegetation surveys using uas and artificial intelligence, In 2018 23rd International Conference on Methods y Models in Automation y Robotics (MMAR)-IEEE, Miedzyzdroje, Poland, August, 2018, 515-520. https://doi.org/10.1109/MMAR.2018.8485874

Segura, M. A. M. (2015). Uso de agroquímicos en la producción intensiva de piña en Costa Rica. Pensamiento actual, 15(25), 183-195. ISSN electrónico: 2215-3586. https://revistas.ucr.ac.cr/index.php/pensamiento-actual/article/view/22604/24028

Siddiqi, M. H., Ahmad, I., y Sulaiman, S. B. (2009). Edge link detector based weed classifier, In 2009 International Conference on Digital Image Processing - IEEE, Bangkok, Thailand, March, 2009, 255-259. https://doi.org/10.1109/ICDIP.2009.64

Tang, J. L., Chen, X. Q., Miao, R. H., y Wang, D. (2016). Weed detection using image processing under different illumination for site-specific areas spraying. Computers and Electronics in Agriculture, 122, 103-111. ISSN: 0168-1699. https://doi.org/10.1016/j.compag.2015.12.016

Utstumo, T., Urdal, F., Brevik, A., Dørum, J., Netland, J., Overskeid, Ø., ... y Gravdahl, J. T. (2018). Robotic in-row weed control in vegetables. Computers and electronics in agriculture, 154, 36-45. ISSN: 01681699. https://doi.org/10.1016/j.compag.2018.08.043

Wagstaff, K. L., y Liu, G. Z. (2018). Automated Classification to Improve the Efficiency of Weeding Library Collections. The Journal of Academic Librarianship, 44(2), 238-247. ISSN: 0099-1333. https://doi.org/10.1016/j.acalib.2018.02.001

Weatherspark.com (2019). [online] Disponible en: https://weatherspark.com/y/24273/Average-Weather-in-Villavicencio-Colombia-Year-Round [Acceso 01 febrero 2019]. https://es.weatherspark.com.

Yang, C. C., Prasher, S. O., Landry, J. A., y Ramaswamy, H. S. (2003). Development of a herbicide application map using artificial neural networks and fuzzy logic. Agricultural systems, 76(2), 561-574. ISSN: 0308-521X. https://doi.org/10.1016/S0308-521X(01)00106-8

Zhang, W., y Wei, X. (2019). A review on weed detection using ground-based machine vision and image processing techniques. Computers and electronics in agriculture, 158, 226-240. ISSN: 0168-1699. https://doi.org/10.1016/j.compag.2019.02.005

Zheng, Y., Zhu, Q., Huang, M., Guo, Y., y Qin, J. (2017). Maize and weed classification using color indices with support vector data description in outdoor fields. Computers and Electronics in Agriculture, 141, 215-222. ISSN: 0168-1699. https://doi.org/10.1016/j.compag.2017.07.028Abouzahir, S., Sadik, M. & Sabir, E. (2017). Iot-empowered Smart Agriculture: A Real-Time Light-Weight Embedded Segmentation System. In International Symposium on Ubiquitous Networking, Springer, Cham, May 2017, pp. 319-332. https://doi.org/10.1007/978-3-319-68179-5_28

Abouzahir, S., Sadik, M. & Sabir, E. (2018). Enhanced Approach for Weeds Species Detection Using Machine Vision. In 2018 International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS)- IEEE, Kenitra, Morocco, 1-6. December 2018. 1-6. https://doi.org/10.1109/ICECOCS.2018.8610505

Agrawal, K. N., Singh, K., Bora, G. C. & Lin, D. (2012). Weed Recognition Using Image-Processing Technique Based on Leaf Parameters. J. Agric. Sci. Technol. B, 2(8B), 899. http://www.davidpublishing.org/show.h...

Bakhshipour, A. & Jafari, A. (2018). Evaluation of Support Vector Machine and Artificial Neural Networks in Weed Detection Using Shape Features. Computers and Electronics in Agriculture, 145, 153-160. https://doi.org/10.1016/j.compag.2017.12.032

Barrero, O., Rojas, D., González, C. & Perdomo, S. (2016). Weed Detection in Rice Fields Using Aerial Images and Neural Networks. In 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA)- IEEE, Bucaramanga, Colombia, August 2016, 1-4. https://doi.org/10.1109/STSIVA.2016.7743317

Bastidas, D. A., Guerrero, J. A. & Wyckhuys, K. (2013). Residuos de plaguicidas en cultivos de pasifloras en regiones de alta producción en Colombia. Revista Colombiana de Química, 4(22), 39-47.

Bradski, G. & Kaehler, A. (2008). Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly Media, Inc.

Brenes-Prendas, S. & Agüero-Alvarado, R. (2007). Reconocimiento taxonómico de malezas y descripción de su manejo, en cuatro fincas productoras de piña (Ananas comosus l.) en Costa Rica. Agronomía Mesoamericana, 18(2), 239-246. http://www.redalyc.org/articulo.oa?id=43718209

Di Cicco, M., Potena, C., Grisetti, G. & Pretto, A. (2017). Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)–IEEE, Vancouver, BC, Canada, 5188-5195, September 2017, 5188-5195. https://doi.org/10.1109/IROS.2017.8206408

Farooq, A., Hu, J. & Jia, X. (2018). Weed Classification in Hyperspectral Remote Sensing Images Via Deep Convolutional Neural Network. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium – IEEE, Valencia, Spain, July, 2018, pp. 3816-3819. https://doi.org/10.1109/IGARSS.2018.8518541

Gee, C., Bossu, J., Jones, G. & Truchetet, F. (2008). Detecting Crops and Weeds in Precision Agriculture, SPIE Newsroom, 2008, https://doi.org/10.1117/2.1200809.1226

Jaramillo-Colorado, B. E., Palacio-Herrera, F. & Pérez-Sierra, I. (2016). Residuos de pesticidas organofosforados en frutas obtenidas de plazas de mercado y supermercados en Cartagena, Colombia. Revista Ciencias Técnicas Agropecuarias, 25(4), 39-46.

Lottes, P., Behley, J., Chebrolu, N., Milioto, A. & Stachniss, C. (2018). Joint Stem Detection and Crop-Weed Classification for Plant-Specific Treatment in Precision Farming. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)–IEEE, Madrid, Spain, October 2018, 8233-8238. https://doi.org/10.1109/IROS.2018.8593678

Lottes, P., Hoeferlin, M., Sander, S., Müter, M., Schulze, P., & Stachniss, L. C. (2016). An Effective Classification System for Separating Sugar Beets and Weeds for Precision Farming Applications. In 2016 IEEE International Conference on Robotics and Automation (ICRA)–IEEE, Stockholm, Sweden, May, 2016, 5157-5163. https://doi.org/10.1109/ICRA.2016.7487720

Pérez-Ortiz, M., Gutiérrez, P. A., Peña, J. M., Torres-Sánchez, J., López-Granados, F. & Hervás-Martínez, C. (2016). Machine Learning Paradigms for Weed Mapping Via Unmanned Aerial Vehicles. In 2016 IEEE Symposium Series on computational intelligence (SSCI)–IEEE, Athens, Greece, December, 2016, pp. 1-8. https://doi.org/10.1109/SSCI.2016.7849987

Potena, C., Nardi, D. & Pretto, A. (2016). Fast and Accurate Crop and Weed Identification with Summarized Train Sets for Precision Agriculture. In International Conference on Intelligent Autonomous Systems, Springer, Cham, July, 2016, pp. 105-121. https://doi.org/10.1007/978-3-319-48036-7_9

Rehman, T. U., Zaman, Q. U., Chang, Y. K., Schumann, A. W. & Corscadden, K. W. (2019). Development and Field Evaluation of a Machine Vision Based In-Season Weed Detection System for Wild Blueberry. Comput. Electron. Agric., 162, 1-13. https://doi.org/10.1016/j.compag.2019.03.023

Reyes, Y., Vergara, I., Torres, O., Lagos, M. D. & Jiménez, E. E. G. (2016). Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria. Ingeniería Investigación y Desarrollo: I2+ D, 16(2), 66-77.

Russell, S. J. & Norvig, P. (2016). Artificial Intelligence: A Modern Approach (3th ed.). Pearson.

Sa, I., Chen, Z., Popović, M., Khanna, R., Liebisch, F., Nieto, J. & Siegwart, R. (2017). Weednet: Dense Semantic Weed Classification Using Multispectral Images and Mav for Smart Farming. IEEE Robotics and Automation Letters, 3(1), 588-595. https://doi.org/10.1109/LRA.2017.2774979

Sandino, J. & González, F. (2018). A Novel Approach for Invasive Weeds and Vegetation Surveys Using UAS and Artificial Intelligence. In 2018 23rd International Conference on Methods y Models in Automation y Robotics (MMAR)-IEEE, Miedzyzdroje, Poland, August 2018, 515-520. https://doi.org/10.1109/MMAR.2018.8485874

Segura, M. A. M. (2015). Uso de agroquímicos en la producción intensiva de piña en Costa Rica. Pensamiento Actual, 15(25), 183-195. https://revistas.ucr.ac.cr/index.php/pensamientoactual/article/view/22604/24028

Siddiqi, M. H., Ahmad, I. & Sulaiman, S. B. (2009). Edge Link Detector Based Weed Classifier. In 2009 International Conference on Digital Image Processing-IEEE, Bangkok, Thailand, March 2009, 255-259. https://doi.org/10.1109/ICDIP.2009.64

Tang, J. L., Chen, X. Q., Miao, R. H. & Wang, D. (2016). Weed Detection Using Image Processing under Different Illumination for Site-Specific Areas Spraying. Computers and Electronics in Agriculture, 122, 103-111. https://doi.org/10.1016/j.compag.2015.12.016

Utstumo, T., Urdal, F., Brevik, A., Dørum, J., Netland, J., Overskeid, Ø. & Gravdahl, J. T. (2018). Robotic In-Row Weed Control in Vegetables. Computers and Electronics in Agriculture, 154, 36-45. https://doi.org/10.1016/j.compag.2018.08.043

Wang, A., Zhang, W. & Wei, X. (2019). A review on weed detection using ground-based machine vision and image processing techniques. Computers and Electronics in Agriculture, 158, 226-240. https://doi.org/10.1016/j.compag.2019.02.005

Wagstaff, K. L. & Liu, G. Z. (2018). Automated Classification to Improve the Efficiency of Weeding Library Collections. The Journal of Academic Librarianship, 44(2), 238-247. https://doi.org/10.1016/j.acalib.2018.02.001

Weatherspark.com (2019). [online] https://weatherspark.com/y/24273/Average-Weather-in-Villavicencio-Colombia-Year-Round

Yang, C. C., Prasher, S. O., Landry, J. A. & Ramaswamy, H. S. (2003). Development of a Herbicide Application Map Using Artificial Neural Networks and Fuzzy Logic. Agricultural Systems, 76(2), 561-574. https://doi.org/10.1016/S0308-521X(01)00106-8

Zhang, W. & Wei, X. (2019). A Review on Weed Detection Using Ground-Based Machine Vision and Image Processing Techniques. Computers and Electronics in Agriculture, 158, 226-240. https://doi.org/10.1016/j.compag.2019.02.005

Zheng, Y., Zhu, Q., Huang, M., Guo, Y. & Qin, J. (2017). Maize and Weed Classification Using Color Indices with Support Vector Data Description in Outdoor Fields. Computers and Electronics in Agriculture, 141, 215-222. https://doi.org/10.1016/j.compag.2017.07.028

Downloads

Download data is not yet available.