Skip to main navigation menu Skip to main content Skip to site footer

Distribution of photoassimilates in sink organs of plants of Solanaceas, tomato and potato. A review

Abstract

Tomato and potato crops are agricultural products of great importance worldwide due to their nutritional and industrial value. The distribution of photoassimilates in the sink organs of these crops depends to a great extent on the metabolism and partition of carbon generated in the photosynthetic processes, on the dynamics of both of the source and sink organs as the activity of enzymes linked to the metabolism of sugars and environmental and nutritional conditions. The objective of this paper was to review and discuss current knowledge of the distribution of photoassimilates in the sink organs and factors that can affect this mechanism in the tomato and potato crops. Based on information collected in recent research and review articles, it is reported that around 80% or 90% of the photoassimilates produced in the source organs in tomato and potato crops are transported or translocated to the sink organs of commercial interest (fruits and tubers). Both source/sink imbalance, as well as water stress and nutritional deficiencies, especially nitrogen and potassium significantly affect the distribution of photoassimilates. In contrast to the effects of the quality of light, it can improve the loading of photoassimilates in the sink organs and improve quality attributes of these such as increases in the size and concentration of sugars. However, more research is still needed to corroborate this effect, especially under field or greenhouse conditions in tropical regions.

Keywords

sink strength, source/sink ratio, sugar metabolism, fruit thinning

PDF (Español) XML (Español)

References

  1. Abelenda, J. A., Bergonzi, S., Oortwijn, M., Sonnewald, S., Du, M., Visser, R. G. F., Sonnewald, U., & Bachem, C. W. B. (2019). Source-Sink Regulation Is Mediated by Interaction of an FT Homolog with a SWEET Protein in Potato. Current Biology, 29(7), 1178-1186.e6. https://doi.org/10.1016/j.cub.2019.02.018. DOI: https://doi.org/10.1016/j.cub.2019.02.018
  2. Agronet. (2019). Área, producción y rendimiento nacional por cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 (consultado septiembre, 2021).
  3. Aliche E., Theeuwen T., Oortwijn M., Visser R., Linden C., 2020. Carbon partitioning mechanisms in Potato under drought stress. Plant Physiology and Biochemistry, 146, 211-219. https://doi.org/10.1016/j.plaphy.2019.11.019. DOI: https://doi.org/10.1016/j.plaphy.2019.11.019
  4. Aluko, O. O., Li, C., Wang, Q., & Liu, H. (2021). Sucrose Utilization for Improved Crop Yields: A Review Article. International Journal of Molecular Sciences, 22(9), 4704. https://doi.org/10.3390/ijms22094704. DOI: https://doi.org/10.3390/ijms22094704
  5. Ardila, G. A., Fischer, G., & Balaguera-López, H. E. (2011). Caracterización del crecimiento del fruto y producción de tres híbridos de tomate (Solanum lycopersicum L.) en tiempo fisiológico bajo invernadero. Revista Colombiana de Ciencias Hortícolas, 5(1), 44-56. https://doi.org/10.17584/rcch.2011v5i1.1252 DOI: https://doi.org/10.17584/rcch.2011v5i1.1252
  6. Aslani, L., Gholami, M., Mobli, M., & Sabzalian, M. R. (2020). The influence of altered sink-source balance on the plant growth and yield of greenhouse tomato. Physiology and Molecular Biology of Plants, 26(11), 2109-2123. https://doi.org/10.1007/s12298-020-00891-2. DOI: https://doi.org/10.1007/s12298-020-00891-2
  7. Balaguera-López, H. E., Álvarez-Herrera, J. G., Martínez-Arévalo, G. E., & Balaguera, W. A. (2009). El contenido de arcilla del suelo influye en el rendimiento de un cultivo de tomate (Solanum lycopersicum L.). Revista Colombiana de Ciencias Hortícolas, 3(2), 199-209. https://doi.org/10.17584/rcch.2009v3i2.1213 DOI: https://doi.org/10.17584/rcch.2009v3i2.1213
  8. Bihmidine, S., Hunter, C. T., Johns, C. E., Koch, K. E., & Braun, D. M. (2013). Regulation of assimilate import into sink organs: Update on molecular drivers of sink strength. Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00177. DOI: https://doi.org/10.3389/fpls.2013.00177
  9. Brunner, I., Herzog, C., Dawes, M. A., Arend, M., & Sperisen, C. (2015). How tree roots respond to drought. Frontiers in Plant Science, 6, 547. https://doi.org/10.3389/fpls.2015.00547. DOI: https://doi.org/10.3389/fpls.2015.00547
  10. Caicedo, D. R., Tellez, M. S. R., Molano, L. E. R., & López, C. E. Ñ. (2010). Efecto de Diferentes Niveles y Épocas de Defoliación Sobre el Rendimiento de la Papa (Solanum tuberosum cv. Parda Pastusa). Revista Facultad Nacional de Agronomía - Medellín, 63(2), 5521-5531.
  11. Castellanos, M. S., Abril, M. S., & López, C. E. Ñ. (2010). Análisis de Crecimiento y Relación Fuente-Demanda de Cuatro Variedades de Papa (Solanum tuberosum L.) en el Municipio de Zipaquirá (Cundinamarca, Colombia). Revista Facultad Nacional de Agronomía - Medellín, 63(1), 5253-5266.
  12. Carpaneto, A., Geiger, D., Bamberg, E., Sauer, N., Fromm, J., & Hedrich, R. (2005). Phloem-localized, Proton-coupled Sucrose Carrier ZmSUT1 Mediates Sucrose Efflux under the Control of the Sucrose Gradient and the Proton Motive Force *. Journal of Biological Chemistry, 280(22), 21437-21443. https://doi.org/10.1074/jbc.M501785200 DOI: https://doi.org/10.1074/jbc.M501785200
  13. Córdoba-Novoa, H. A., Gómez, S. V., & Ñústez, C. E. (2018). Evaluación del rendimiento y fenología de tres genotipos de tomate cherry (Solanum lycopersicum L.) bajo condiciones de invernadero. Revista Colombiana de Ciencias Hortícolas, 12(1), 113-125. https://doi.org/10.17584/rcch.2018v12i1.7348 DOI: https://doi.org/10.17584/rcch.2018v12i1.7348
  14. Chang, T.-G., Zhu, X.-G., & Raines, C. (2017). Source-sink interaction: A century old concept under the light of modern molecular systems biology. Journal of Experimental Botany, 68(16), 4417-4431. https://doi.org/10.1093/jxb/erx002. DOI: https://doi.org/10.1093/jxb/erx002
  15. Chen, J., Kang, S., Du, T., Qiu, R., Guo, P., & Chen, R. (2013). Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management, 129, 152-162. https://doi.org/10.1016/j.agwat.2013.07.011. DOI: https://doi.org/10.1016/j.agwat.2013.07.011
  16. Chen, L., Yang, Y., Jiang, Y., Zhao, J., Zang, H., Wang, X., Hu, Y., & Xue, X. (2019). RNA-Seq Analysis Reveals Differential Responses of Potato (Solanum tuberosum L.) Plantlets Cultured in vitro to Red, Blue, Green, and White Light-emitting Diodes (LEDs). Journal of Plant Growth Regulation, 38(4), 1412-1427. https://doi.org/10.1007/s00344-019-09944-7 DOI: https://doi.org/10.1007/s00344-019-09944-7
  17. De Jong, H., 2016. Impact of the potato on society. Am. J. Potato Res., 93(5), 415-429. https://doi.org/10.1007/s12230-016-9529-1. DOI: https://doi.org/10.1007/s12230-016-9529-1
  18. Deblonde, P. M. K., & Ledent, J. F. (2001). Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. European Journal of Agronomy, 14(1), 31-41. https://doi.org/10.1016/S1161-0301(00)00081-2. DOI: https://doi.org/10.1016/S1161-0301(00)00081-2
  19. Federación Colombiana de Productores de Papa-Fedepapa. (2020). Nuestros héroes de campo no paran frente al Covid-19. Revista papa, 50, 1-14. https://fedepapa.com/wp-content/uploads/2020/04/REVISTA-50-completa-2.pdf.
  20. Fischer, G., Almanza-Merchán, P. J., & Ramírez, F. (2012). Source-sink relationships in fruit species: A review. Revista Colombiana de Ciencias Hortícolas, 6(2), 238-253. https://doi.org/10.17584/rcch.2012v6i2.1980 DOI: https://doi.org/10.17584/rcch.2012v6i2.1980
  21. Glanz-Idan, N., & Wolf, S. (2020). Upregulation of photosynthesis in mineral nutrition-deficient tomato plants by reduced source-to-sink ratio. Plant Signaling & Behavior, 15(2), 1712543. https://doi.org/10.1080/15592324.2020.1712543. DOI: https://doi.org/10.1080/15592324.2020.1712543
  22. Golovko, T.K., Tabalenkova, G.N., 2019. Source–Sink Relationships in Potato Plants. Russ J Plant Physiol 66, 664–671. https://doi.org/10.1134/S1021443719030051. DOI: https://doi.org/10.1134/S1021443719030051
  23. Gómez M., Magnitskiy, S., Rodríguez, A. Darghan. (2017). Accumulation of N, P, and K in the tubers of potato (Solanum tuberosum L. ssp. Andigena) under contrasting soils of the Andean region of Colombia. Agronomía Colombiana. 35. 59-67. https://doi.org/10.15446/agron.colomb.v35n1.61068. DOI: https://doi.org/10.15446/agron.colomb.v35n1.61068
  24. Grzebisz, W., Szczepaniak, W., & Bocianowski, J. (2020). Potassium fertilization as a driver of sustainable management of nitrogen in potato (Solanum tuberosum L.). Field Crops Research, 254, 107824. https://doi.org/10.1016/j.fcr.2020.107824 DOI: https://doi.org/10.1016/j.fcr.2020.107824
  25. Ho, L. C. (1996). The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato. Journal of Experimental Botany, 47, 1239-1243. DOI: https://doi.org/10.1093/jxb/47.Special_Issue.1239
  26. Ho, L.-H., Klemens, P. A. W., Neuhaus, H. E., Ko, H.-Y., Hsieh, S.-Y., & Guo, W.-J. (2019). SlSWEET1a is involved in glucose import to young leaves in tomato plants. Journal of Experimental Botany, 70(12), 3241-3254. https://doi.org/10.1093/jxb/erz154 DOI: https://doi.org/10.1093/jxb/erz154
  27. Hou, X., Zhang, W., Du, T., Kang, S., & Davies, W. J. (2020). Responses of water accumulation and solute metabolism in tomato fruit to water scarcity and implications for main fruit quality variables. Journal of Experimental Botany, 71(4), 1249-1264. https://doi.org/10.1093/jxb/erz526 DOI: https://doi.org/10.1093/jxb/erz526
  28. Hikosaka, S., Iyoki, S., Hayakumo, M., & Goto, E. (2013). Effects of light intensity and amount of supplemental LED lighting on photosynthesis and fruit growth of tomato plants under artificial conditions. Journal of Agricultural Meteorology, 69 (2), 93-100 https://doi.org/10.2480/AGRMET.69.2.5 DOI: https://doi.org/10.2480/agrmet.69.2.5
  29. Ji, Y., Ocaña, D. N., Choe, D., Larsen, D. H., Marcelis, L. F. M., & Heuvelink, E. (2020). Far-red radiation stimulates dry mass partitioning to fruits by increasing fruit sink strength in tomato. New Phytologist, 228(6), 1914-1925. https://doi.org/10.1111/nph.16805. DOI: https://doi.org/10.1111/nph.16805
  30. Kanai, S., Ohkura, K., Adu-Gyamfi, J. J., Mohapatra, P. K., Nguyen, N. T., Saneoka, H., & Fujita, K. (2007). Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. Journal of Experimental Botany, 58(11), 2917-2928. https://doi.org/10.1093/jxb/erm149 DOI: https://doi.org/10.1093/jxb/erm149
  31. Kang, M., Yang, L., Zhang, B., & de Reffye, P. (2011). Correlation between dynamic tomato fruit-set and source–sink ratio: A common relationship for different plant densities and seasons? Annals of Botany, 107(5), 805-815. https://doi.org/10.1093/aob/mcq244. DOI: https://doi.org/10.1093/aob/mcq244
  32. Kinet, J. M. (1977). Effect of light conditions on the development of the inflorescence in tomato. Scientia Horticulturae, 6(1), 15-26. https://doi.org/10.1016/0304-4238(77)90074-7 DOI: https://doi.org/10.1016/0304-4238(77)90074-7
  33. Lanoue, J., Leonardos, E. D., & Grodzinski, B. (2018). Effects of Light Quality and Intensity on Diurnal Patterns and Rates of Photo-Assimilate Translocation and Transpiration in Tomato Leaves. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00756. DOI: https://doi.org/10.3389/fpls.2018.00756
  34. Lehretz, G. G., Sonnewald, S., Hornyik, C., Corral, J. M., & Sonnewald, U. (2019). Post-transcriptional Regulation of FLOWERING LOCUS T Modulates Heat-Dependent Source-Sink Development in Potato. Current Biology, 29(10), 1614-1624.e3. https://doi.org/10.1016/j.cub.2019.04.027. DOI: https://doi.org/10.1016/j.cub.2019.04.027
  35. Lerna, A., & Mauromicale, G. (2012). Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime. Agricultural Water Management, 115, 276-284.
  36. https://doi.org/10.1016/j.agwat.2012.09.011 DOI: https://doi.org/10.1016/j.agwat.2012.09.011
  37. Li, T., Heuvelink, E., & Marcelis, L. F. M. (2015). Quantifying the source–sink balance and carbohydrate content in three tomato cultivars. Frontiers in Plant Science, 6, 416. https://doi.org/10.3389/fpls.2015.00416 DOI: https://doi.org/10.3389/fpls.2015.00416
  38. Li, W., Xiong, B., Wang, S., Deng, X., Yin, L., & Li, H. (2016). Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage. Plos One, 11(1), e0146877. https://doi.org/10.1371/journal.pone.0146877 DOI: https://doi.org/10.1371/journal.pone.0146877
  39. Li, R., You, J., Miao, C., Kong, L., Long, J., Yan, Y., Xu, Z., & Liu, X. (2020). Monochromatic lights regulate the formation, growth, and dormancy of in vitro-grown Solanum tuberosum L. microtubers. Scientia Horticulturae, 261, 108947. https://doi.org/10.1016/j.scienta.2019.108947 DOI: https://doi.org/10.1016/j.scienta.2019.108947
  40. López-Delacalle, M., Camejo, D., Garcia-Marti, M., Lopez-Ramal, M. J., Nortes, P. A., Martinez, V., & Rivero, R. M. (2021). Deciphering fruit sugar transport and metabolism from tolerant and sensitive tomato plants subjected to simulated field conditions. Physiologia Plantarum, 1-14. https://doi.org/10.1111/ppl.13355 DOI: https://doi.org/10.1111/ppl.13355
  41. Luo, A., Zhou, C., & Chen, J. (2021). The Associated With Carbon Conversion Rate and Source–Sink Enzyme Activity in Tomato Fruit Subjected to Water Stress and Potassium Application. Frontiers in Plant Science, 12, 681145. https://doi.org/10.3389/fpls.2021.681145. DOI: https://doi.org/10.3389/fpls.2021.681145
  42. Medyouni, I., Zouaoui, R., Rubio, E., Serino, S., Ahmed, H. B., & Bertin, N. (2021). Effects of water deficit on leaves and fruit quality during the development period in tomato plant. Food Science & Nutrition, 9(4), 1949-1960. https://doi.org/10.1002/fsn3.2160 DOI: https://doi.org/10.1002/fsn3.2160
  43. Mengel, K., & Viro, M. (1974). Effect of Potassium Supply on the Transport of Photosynthates to the Fruits of Tomatoes (Lycopersicon esculentum). Physiologia Plantarum, 30(4), 295-300. https://doi.org/10.1111/j.1399-3054.1974.tb03660.x. DOI: https://doi.org/10.1111/j.1399-3054.1974.tb03660.x
  44. Maboko, M. M., Plooy, C. P. D., & Chiloane, S. (2017). Yield of determinate tomato cultivars grown in a closed hydroponic system as affected by plant spacing. Horticultura Brasileira, 35, 258-264. https://doi.org/10.1590/S0102-053620170217 DOI: https://doi.org/10.1590/s0102-053620170217
  45. Mbonihankuye, C., Kusolwa, P., & Msogoya, T. J. (2013). Assessment of the effect of pruning systems on plant developmental cycle - yield and quality of selected indeterminate tomato lines. Acta Horticulturae, 1007, 535-542. https://doi.org/10.17660/ActaHortic.2013.1007.61 DOI: https://doi.org/10.17660/ActaHortic.2013.1007.61
  46. Ñústez L, C. E. Ñ., Castellanos, M. S., & Abril, M. S. (2009). Acumulación y distribución de materia seca de cuatro variedades de papa (Solanum tuberosum L.) en Zipaquirá, Cundinamarca (Colombia). Revista Facultad Nacional de Agronomía Medellín, 62(1), 4823-4834.
  47. Osorio, S., Ruan, Y.-L., & Fernie, A. R. (2014). An update on source-to-sink carbon partitioning in tomato. Frontiers in Plant Science, 5, 516. https://doi.org/10.3389/fpls.2014.00516 DOI: https://doi.org/10.3389/fpls.2014.00516
  48. Perilla, A., Rodríguez, L. F., & Bermúdez, L. T. (2011). Estudio técnico-económico del sistema de producción de tomate bajo invernadero en Guateque, Sutatenza y Tenza (Boyacá). Revista Colombiana de Ciencias Hortícolas, 5(2), 279-294. https://doi.org/10.17584/rcch.2011v5i2.1269 DOI: https://doi.org/10.17584/rcch.2011v5i2.1269
  49. Smith, M. R., Rao, I. M., & Merchant, A. (2018). Source-Sink Relationships in Crop Plants and Their Influence on Yield Development and Nutritional Quality. Frontiers in Plant Science, 9, 1889. https://doi.org/10.3389/fpls.2018.01889 DOI: https://doi.org/10.3389/fpls.2018.01889
  50. Rodrigues, J., Inzé, D., Nelissen, H., & Saibo, N. J. M. (2019). Source-Sink Regulation in Crops under Water Deficit. Trends in Plant Science, 24(7), 652-663. https://doi.org/10.1016/j.tplants.2019.04.005 DOI: https://doi.org/10.1016/j.tplants.2019.04.005
  51. Rodríguez P, L., Sanjuanelo C., D., Ñústez L., C. E., & Moreno-Fonseca, L. P. (2016). Growth and phenology of three Andean potato varieties (Solanum tuberosum L.) under water stress. Agronomía Colombiana, 34(2), 141-154. https://doi.org/10.15446/agron.colomb.v34n2.55279 DOI: https://doi.org/10.15446/agron.colomb.v34n2.55279
  52. Ruža, A., Skrabule, I., & Vaivode, A. (2013). Influence of Nitrogen on Potato Productivity and Nutrient Use Efficiency. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., 67(3), 247-253. https://doi.org/10.2478/prolas-2013-0043 DOI: https://doi.org/10.2478/prolas-2013-0043
  53. Wang, R., Gui, Y., Zhao, T., Ishii, M., Eguchi, M., Xu, H., Li, T., & Iwasaki, Y. (2020). Determining the Relationship between Floral Initiation and Source–Sink Dynamics of Tomato Seedlings Affected by Changes in Shading and Nutrients. HortScience, 55(4), 457-464. https://doi.org/10.21273/HORTSCI14753-19. DOI: https://doi.org/10.21273/HORTSCI14753-19
  54. Quintana-Baquero, R. A. Q., Balaguera-López, H. E., Herrera, J. G. Á., Hernández, J. F., & Pinzón, H. H. (2010). Efecto del número de racimos por planta sobre el rendimiento de tomate (Solanum lycopersicum L.). Revista Colombiana de Ciencias Hortícolas, 4(2), 185-198. https://doi.org/10.17584/rcch.2010v4i2.1240. DOI: https://doi.org/10.17584/rcch.2010v4i2.1240
  55. Xu, M., Duan, W., Fan, P. G., Wu, B. H., Wang, L. J., Ma, L., Archbold, D. D., & Li, S. H. (2014). Low sink-induced stomatal closure alters photosynthetic rates of source leaves in beans as dependent on H2O2 and ABA accumulation in guard cells. Russian Journal of Plant Physiology, 61(3), 397-408. https://doi.org/10.1134/S1021443714020186. DOI: https://doi.org/10.1134/S1021443714020186
  56. Yoshioka, H. (1986). Translocation and distribution of photosynthates in tomato plants. Japan Agricultural Research Quarterly 19(4), 266-270.
  57. Zheng, X., Jitsuyama, Y., Terauchi, T., & Iwama, K. (2009). Effects of Drought and Shading on Non-structural Carbohydrate Stored in the Stem of Potato (Solanum tuberosum L.). Plant Production Science, 12(4), 449-452. https://doi.org/10.1626/pps.12.449 DOI: https://doi.org/10.1626/pps.12.449

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.