Skip to main navigation menu Skip to main content Skip to site footer

Herramientas para el modelado epidemiológico de enfermedades en animales. Caso de estudio: brucelosis bovina

Abstract

El artículo describe la importancia de las herramientas informáticas, cuyo uso ha crecido en grado significativo en los últimos años, para comprender la dinámica de la transmisión de enfermedades infecciosas, así como para diseñar medidas eficaces de control y erradicación de estas. La importancia de los modelos epidemiológicos en el tratamiento de enfermedades infecciosas se combina con áreas como matemáticas, estadística e ingeniería, y los resultados son relevantes para generar políticas de control. Se explican, de manera sinóptica, los antecedentes, la importancia y la clasificación de herramientas informáticas en padecimientos infecciosos, y, adicionalmente, se detalla el modelo epidemiológico común de transmisión de enfermedades.

Keywords

bovinos, epidemiología, enfermedades infecciosas, modelado epidemiológico en animales, modelos matemáticos

PDF (Español)

References

  1. Machado G., Recamonde M., Corbellini L. What variables are important in predicting bovine viral diarrea virus? A random forest approach. Veterinary Research. 2015; 46-85. DOI: https://doi.org/10.1186/s13567-015-0219-7
  2. Ivorra B., Martínez-López B., Sánchez-Vizcaíno J., Ramos Á. Mathematical formulation and validation of the Be-Fast model for Classical Swine Virus spread between and within farms. Ann Oper. Res. 2014; 219: 25-47. DOI: http://doi.org/10.1007/s10479-012-1257-4. DOI: https://doi.org/10.1007/s10479-012-1257-4
  3. Kermack WO., McKendrick AG. A Contribution to the Mathematical Theory of Epidemics. Proc R Soc London A Math Phys Eng Sci. 1927; 115(772): 700-721. DOI: http://doi.org/10.1098/rspa.1927.0118. DOI: https://doi.org/10.1098/rspa.1927.0118
  4. Keeling MJ., Rohani P. Modeling infectious diseases in Humans and Animals. Princeton University Press. 2011. DOI: https://doi.org/10.2307/j.ctvcm4gk0
  5. Kang G., Gunaseelan L., Abbas K. Epidemiological dynamics of bovine brucellosis in India. Ann Glob Heal. 2015; 81(1): 127-128. DOI: http://doi.org/10.1016/j.aogh.2015.02.793. DOI: https://doi.org/10.1016/j.aogh.2015.02.793
  6. Montesinos-López OA., Hernández-Suárez CM. Modelos matemáticos para enfermedades infecciosas. Salud Pública de México. 2007; 49(3): 218-226. DOI: http://doi.org/10.1590/S0036-36342007000300007. DOI: https://doi.org/10.1590/S0036-36342007000300007
  7. Cakici B., Boman M. A workflow for software development within computational epidemiology. Journal of Computational Science 2011; 216-222. DOI: http://doi.org/10.1016/j.jocs.2011.05.004. DOI: https://doi.org/10.1016/j.jocs.2011.05.004
  8. Microsoft. Excel, 2016. Recuperado de: http://products.office.com/es-co/excel.
  9. Jardine D. Euler's Method in Euler's Words. Mathematical Time Capsules: Historical Modules for the Mathematics Classroom. 2011; 215-222. DOI: http://doi.org/10.5948/UPO9780883859841.029. DOI: https://doi.org/10.5948/UPO9780883859841.029
  10. Crawley MJ. The R Book. John Wiley & Sons, 2007. DOI: http://doi.org/10.1002/9780470515075. DOI: https://doi.org/10.1002/9780470515075
  11. Berkeley Madonna. Modeling and Analysis of Dynamic Systems, 2016. Recuperado de: http://www.berkeleymadonna.com/.
  12. Vynnycky E., White R. An Introduction to Infectious Disease Modelling. OUP Oxford, 2010.
  13. Macey R., Oster G., Zahnley T. Berkeley Madonna User’s Guide. University of California. 2009. Recuperado de: http://www.berkeleymadonna.com/system/storage/download/BM-Users-Guide-8.0.2.pdf.
  14. Enterprises Scilab. Open source software for numerical computation, 2015. Recuperado de: http://www.scilab.org/scilab/about.
  15. Matworks. Matlab, The Language of Technical Computing, 2016. Recuperado de: http://www.mathworks.com/products/matlab/.
  16. Matlab. Solve nonstiff differential equations, 2016. Recuperado de: http://www.mathworks.com/help/matlab/ref/ode45.html.
  17. GLEAMviz. The global epidemic and mobility model. 2016. Recuperado de: http://www.gleamviz.org/.
  18. EpiModel. EpiModel Mathematical modeling of infectious disease. 2016. Recuperado de: http://www.epimodel.org/index.html.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.