Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Epoxidación diasteroselectiva de R-(+)-limoneno: una minirevisión acerca de los métodos de sintesis

Resumen

La epoxidación de R-(+)-limoneno ha sido enfocada desde diferentes métodos de síntesis. Gracias a los epóxidos ópticamente activos obtenidos de esta reacción, son ampliamente empleados a nivel industrial, como: agroquímicos, polímeros, cosméticos, farmacéuticos. Un punto clave encontrado en este tema ha sido la inducción asimétrica para mejorar el rendimiento a los diastereoisómeros del óxido de 1,2-limoneno. Se han desarrollado muchos catalizadores para la epoxidación diastereoselectiva, pero algunas metodologías de oxidación no han sido tan útiles. Las enzimas y el catalizador de Jacobsen presentaron la mayor selectividad hacia los diastereoisómeros epóxidos endocíclicos, mientras que otros catalizadores como los metales soportados sobre materiales mesoporosos se dirigieron a uno o más productos de oxidación, reduciendo su potencial escalamiento industrial. Además, se evidenció que el control de los parámetros de reacción permite la segregación del catalizador homogéneo a una fase distinta a la de los productos de reacción, aumentando así su reutilización útil en varios ciclos de reacción. Esta minirevisión confronta los diferentes sistemas utilizados para la epoxidación diastereoselectiva de R-(+)-limoneno. También se discuten los desafíos, problemas y tendencias de dicha transformación química.

Palabras clave

R-( )-limoneno, Epoxidación, Oxidación catalítica, Óxido de 1,2-limoneno, Diastereoisómeros.

PDF

Citas

  1. C. S. White, "Monoterpenes: Their effects on ecosystem nutrient cycling," (in eng), J Chem Ecol, vol. 20, no. 6, pp. 1381-406, Jun 1994. DOI: https://doi.org/10.1007/BF02059813
  2. A. F. Thomas and Y. Bessière, "Limonene," Natural Product Reports, 10.1039/NP9890600291 vol. 6, no. 3, pp. 291-309, 1989. DOI: https://doi.org/10.1039/NP9890600291
  3. B. Ozturk, J. Winterburn, and M. Gonzalez-Miquel, "Orange peel waste valorisation through limonene extraction using bio-based solvents," Biochemical Engineering Journal, vol. 151, p. 107298, 2019/11/15/ 2019. DOI: https://doi.org/10.1016/j.bej.2019.107298
  4. A. Cano, A. Medina, and A. Bermejo, "Bioactive compounds in different citrus varieties. Discrimination among cultivars," Journal of Food Composition and Analysis, vol. 21, no. 5, pp. 377-381, 2008/08/01/ 2008. DOI: https://doi.org/10.1016/j.jfca.2008.03.005
  5. P. A. Niño, M. J. E. Quijano, and C. P. P. J. S. a. d. l. c. d. c. e. C. l. y. p. Carvalho, "Situación actual de la cadena de cítricos en Colombia: limitantes y perspectivas," 2008.
  6. R. Ciriminna, M. Lomeli-Rodriguez, P. D. Cara, J. A. Lopez-Sanchez, and M. J. C. C. Pagliaro, "Limonene: a versatile chemical of the bioeconomy," vol. 50, no. 97, pp. 15288-15296, 2014. DOI: https://doi.org/10.1039/C4CC06147K
  7. M. Shahbandeh. (2021). Orange production worldwide from 2012/2013 to 2020/2021. Available: https://www.statista.com/statistics/577398/world-orange-production/
  8. J. R. Rojas et al., Principales características y tendencias del mercado de cítricos en Colombia. Corporación Colombiana de Investigación Agropecuaria Corpoica, 2014.
  9. H. Wang, G. Cao, and R. L. Prior, "Total Antioxidant Capacity of Fruits," Journal of Agricultural and Food Chemistry, vol. 44, no. 3, pp. 701-705, 1996/01/01 1996. DOI: https://doi.org/10.1021/jf950579y
  10. L.-D. Du, X.-Y. Kong, and G.-H. Du, "Vitamin C," in Natural Small Molecule Drugs from PlantsSingapore: Springer Singapore, 2018, pp. 653-658. DOI: https://doi.org/10.1007/978-981-10-8022-7_105
  11. A. C. Carr and S. J. N. Maggini, "Vitamin C and immune function," vol. 9, no. 11, p. 1211, 2017. DOI: https://doi.org/10.3390/nu9111211
  12. M. Pourbafrani, G. Forgács, I. S. Horváth, C. Niklasson, and M. J. Taherzadeh, "Production of biofuels, limonene and pectin from citrus wastes," (in eng), Bioresour Technol, vol. 101, no. 11, pp. 4246-50, Jun 2010. DOI: https://doi.org/10.1016/j.biortech.2010.01.077
  13. L. V. Peñaranda Gonzalez, S. P. Montenegro Gómez, and P. A. Giraldo Abad, "Aprovechamiento de residuos agroindustriales en Colombia," Revista de Investigación Agraria y Ambiental, vol. 8, no. 2, pp. 141 - 150, 06/05 2017. DOI: https://doi.org/10.22490/21456453.2040
  14. S. Nikfar and A. F. Behboudi, "Limonene," in Encyclopedia of Toxicology (Third Edition), P. Wexler, Ed. Oxford: Academic Press, 2014, pp. 78-82. DOI: https://doi.org/10.1016/B978-0-12-386454-3.00628-X
  15. M. M. Tripodo, F. Lanuzza, G. Micali, R. Coppolino, and F. Nucita, "Citrus waste recovery: a new environmentally friendly procedure to obtain animal feed," Bioresource Technology, vol. 91, no. 2, pp. 111-115, 2004/01/01/ 2004. DOI: https://doi.org/10.1016/S0960-8524(03)00183-4
  16. D. Mamma, E. Kourtoglou, and P. Christakopoulos, "Fungal multienzyme production on industrial by-products of the citrus-processing industry," Bioresource Technology, vol. 99, no. 7, pp. 2373-2383, 2008/05/01/ 2008. DOI: https://doi.org/10.1016/j.biortech.2007.05.018
  17. K. Cury, Y. Aguas, A. Martinez, R. Olivero, and L. C. J. R. C. d. C. A.-R. Ch, "Residuos agroindustriales su impacto, manejo y aprovechamiento," vol. 9, no. S1, pp. 122-132, 2017. DOI: https://doi.org/10.24188/recia.v9.nS.2017.530
  18. M. A. Teixeira, O. Rodríguez, P. Gomes, V. Mata, and A. E. Rodrigues, "Chapter 1 - A Product Engineering Approach in the Perfume Industry," in Perfume Engineering, M. A. Teixeira, O. Rodríguez, P. Gomes, V. Mata, and A. E. Rodrigues, Eds. Oxford: Butterworth-Heinemann, 2013, pp. 1-13. DOI: https://doi.org/10.1016/B978-0-08-099399-7.00001-8
  19. D. Djordjevic, L. Cercaci, J. Alamed, D. J. McClements, and E. A. Decker, "Chemical and Physical Stability of Protein and Gum Arabic-Stabilized Oil-in-Water Emulsions Containing Limonene," vol. 73, no. 3, pp. C167-C172, 2008. DOI: https://doi.org/10.1111/j.1750-3841.2007.00659.x
  20. D. M. Vigushin et al., "Phase I and pharmacokinetic study of D-limonene in patients with advanced cancer," vol. 42, no. 2, pp. 111-117, 1998. DOI: https://doi.org/10.1007/s002800050793
  21. P. Brézot, C. Malosse, K. Mori, and M. Renou, "Bisabolene epoxides in sex pheromone innezara viridula (L.) (Heteroptera: Pentatomidae): Role ofcis isomer and relation to specificity of pheromone," Journal of Chemical Ecology, vol. 20, no. 12, p. 3133, 1994/12/01 1994. DOI: https://doi.org/10.1007/BF02033716
  22. P. S. Löser, P. Rauthe, M. A. R. Meier, and A. Llevot, "Sustainable catalytic rearrangement of terpene-derived epoxides: towards bio-based biscarbonyl monomers," vol. 378, no. 2176, p. 20190267, 2020. DOI: https://doi.org/10.1098/rsta.2019.0267
  23. F. Parrino, A. Fidalgo, L. Palmisano, L. M. Ilharco, M. Pagliaro, and R. Ciriminna, "Polymers of Limonene Oxide and Carbon Dioxide: Polycarbonates of the Solar Economy," ACS Omega, vol. 3, no. 5, pp. 4884-4890, 2018/05/31 2018. DOI: https://doi.org/10.1021/acsomega.8b00644
  24. H. Blattmann, M. Fleischer, M. Bähr, and R. Mülhaupt, "Isocyanate- and Phosgene-Free Routes to Polyfunctional Cyclic Carbonates and Green Polyurethanes by Fixation of Carbon Dioxide," vol. 35, no. 14, pp. 1238-1254, 2014. DOI: https://doi.org/10.1002/marc.201400209
  25. S. J. Poland and D. J. Darensbourg, "A quest for polycarbonates provided via sustainable epoxide/CO2 copolymerization processes," Green Chemistry, 10.1039/C7GC02560B vol. 19, no. 21, pp. 4990-5011, 2017. DOI: https://doi.org/10.1039/C7GC02560B
  26. F. Auriemma, C. De Rosa, M. R. Di Caprio, R. Di Girolamo, W. C. Ellis, and G. W. Coates, "Stereocomplexed Poly(Limonene Carbonate): A Unique Example of the Cocrystallization of Amorphous Enantiomeric Polymers," vol. 54, no. 4, pp. 1215-1218, 2015. DOI: https://doi.org/10.1002/anie.201410211
  27. N. Kindermann, À. Cristòfol, and A. W. Kleij, "Access to Biorenewable Polycarbonates with Unusual Glass-Transition Temperature (Tg) Modulation," ACS Catalysis, vol. 7, no. 6, pp. 3860-3863, 2017/06/02 2017. DOI: https://doi.org/10.1021/acscatal.7b00770
  28. I. Javni, D. P. Hong, and Z. S. Petrović, "Soy-based polyurethanes by nonisocyanate route," vol. 108, no. 6, pp. 3867-3875, 2008. DOI: https://doi.org/10.1002/app.27995
  29. M. Bähr, A. Bitto, and R. Mülhaupt, "Cyclic limonene dicarbonate as a new monomer for non-isocyanate oligo- and polyurethanes (NIPU) based upon terpenes," Green Chemistry, 10.1039/C2GC35099H vol. 14, no. 5, pp. 1447-1454, 2012. DOI: https://doi.org/10.1039/c2gc35099h
  30. O. Hauenstein, M. Reiter, S. Agarwal, B. Rieger, and A. Greiner, "Bio-based polycarbonate from limonene oxide and CO2 with high molecular weight, excellent thermal resistance, hardness and transparency," Green Chem., vol. 18, 09/15 2015. DOI: https://doi.org/10.1039/C5GC01694K
  31. L. Chunliang, R. Sablong, and C. Koning, "Synthesis and Characterization of fully-biobased α,ω-dihydroxyl poly(limonene carbonate)s and their initial evaluation in coating applications," European Polymer Journal, vol. 67, 01/09 2015. DOI: https://doi.org/10.1016/j.eurpolymj.2015.01.003
  32. C. Li, S. van Berkel, R. J. Sablong, and C. E. Koning, "Post-functionalization of fully biobased poly(limonene carbonate)s: Synthesis, characterization and coating evaluation," European Polymer Journal, vol. 85, pp. 466-477, 2016/12/01/ 2016. DOI: https://doi.org/10.1016/j.eurpolymj.2016.10.053
  33. V. Schimpf, B. S. Ritter, P. Weis, K. Parison, and R. Mülhaupt, "High Purity Limonene Dicarbonate as Versatile Building Block for Sustainable Non-Isocyanate Polyhydroxyurethane Thermosets and Thermoplastics," Macromolecules, vol. 50, no. 3, pp. 944-955, 2017/02/14 2017. DOI: https://doi.org/10.1021/acs.macromol.6b02460
  34. R. Fuscaldo, E. Boeira, R. Stieler, D. Lüdtke, and J. Gregório, "Chiral Amino and Imino-Alcohols Based on (R)-Limonene," Journal of the Brazilian Chemical Society, vol. 31, 01/01 2019. DOI: https://doi.org/10.21577/0103-5053.20190201
  35. W. Chrisman et al., "A simple and convenient synthesis of β-amino alcohol chiral auxiliaries based on limonene oxide," Tetrahedron Letters, vol. 42, no. 34, pp. 5805-5807, 2001/08/20/ 2001. DOI: https://doi.org/10.1016/S0040-4039(01)01135-2
  36. E. E. Stashenko, G. P. Arias, and R. J. S. e. t. Torres, "Biotransformación de terpenos r (+)-limoneno, a-pineno y?-terpineno por medio de cloroperoxidasa de caldariomyces fumago," vol. 1, no. 33, pp. 75-78, 2007.
  37. A. K. Yudin, Aziridines and epoxides in organic synthesis. John Wiley & Sons, 2006. DOI: https://doi.org/10.1002/3527607862
  38. A. Pena et al., "Limonene oxidation by molecular oxygen under solvent-free conditions: The influence of peroxides and catalysts on the reaction rate," Reaction Kinetics, Mechanisms and Catalysis, vol. 107, 12/01 2012. DOI: https://doi.org/10.1007/s11144-012-0485-6
  39. H. Martínez Q, E. A. Paez-Mozo, and F. Martínez O, "Selective Photo-epoxidation of (R)-(+)- and (S)-(−)-Limonene by Chiral and Non-Chiral Dioxo-Mo(VI) Complexes Anchored on TiO2-Nanotubes," Topics in Catalysis, vol. 64, no. 1, pp. 36-50, 2021/01/01 2021. DOI: https://doi.org/10.1007/s11244-020-01355-3
  40. J. Reyes Calle, J. A. Cubillos Lobo, C. Montes de Correa, and A. L. Villa Holguín, "Efecto del agente oxidante y la quiralidad del catalizador en la epoxidación de R-(+)-limoneno con catalizadores tipo Jacobsen," 2008.
  41. S. Bhattacharjee, T. J. Dines, and J. A. Anderson, "Synthesis and application of layered double hydroxide-hosted catalysts for stereoselective epoxidation using molecular oxygen or air," Journal of Catalysis, vol. 225, no. 2, pp. 398-407, 2004/07/25/ 2004. DOI: https://doi.org/10.1016/j.jcat.2004.04.008
  42. A. J. Bonon, Y. N. Kozlov, J. O. Bahú, R. M. Filho, D. Mandelli, and G. B. Shul’pin, "Limonene epoxidation with H2O2 promoted by Al2O3: Kinetic study, experimental design," Journal of Catalysis, vol. 319, pp. 71-86, 2014/11/01/ 2014. DOI: https://doi.org/10.1016/j.jcat.2014.08.004
  43. M. F. M. Gunam Resul, A. López Fernández, A. Rehman, and A. Harvey, "Development of a Selective, Solvent-free Epoxidation of Limonene Using Hydrogen Peroxide and a Tungsten-based Catalyst," Reaction Chemistry & Engineering, vol. 3, 08/08 2018. DOI: https://doi.org/10.1039/C8RE00094H
  44. L. Lima, M. Corraza, L. Cardozo-Filho, H. Márquez-Alvarez, and O. J. B. J. o. C. E. Antunes, "Oxidation of limonene catalyzed by metal (salen) complexes," vol. 23, pp. 83-92, 2006. DOI: https://doi.org/10.1590/S0104-66322006000100009
  45. J. Bermudez, G. Rojas, R. Benítez, and J. Martin, "Easy Epoxidation of Monoterpenes from Common Starting Materials," Journal of the Brazilian Chemical Society, vol. 31, 05/01 2020. DOI: https://doi.org/10.21577/0103-5053.20190253
  46. L. Charbonneau and S. Kaliaguine, "Epoxidation of limonene over low coordination Ti in Ti- SBA-16," Applied Catalysis A: General, vol. 533, 01/04 2017. DOI: https://doi.org/10.1016/j.apcata.2017.01.001
  47. A. L. Villa Holguín, E. A. Alarcón Durango, A. Talavera López, S. A. Gómez Torres, and G. A. Fuentes Zurita, "Limonene epoxidation in aqueous phase over Ti/KIT-6," 2018.
  48. Y. Mahamat Ahmat, S. Madadi, L. Charbonneau, and S. Kaliaguine, "Epoxidation of Terpenes," vol. 11, no. 7, p. 847, 2021. DOI: https://doi.org/10.3390/catal11070847
  49. R. Tomar, S. Jain, P. yadav, T. Bajaj, F. Mohajer, and G. Ziarani, "Conversion of Limonene over Heterogeneous Catalysis: An Overview," Current Organic Synthesis, vol. 18, 08/24 2021.
  50. C. Chardin, J. Rouden, S. Livi, and J. Baudoux, "Dimethyldioxirane (DMDO) as a valuable oxidant for the synthesis of polyfunctional aromatic imidazolium monomers bearing epoxides," Green Chemistry, 10.1039/C7GC02372C vol. 19, no. 21, pp. 5054-5059, 2017. DOI: https://doi.org/10.1039/C7GC02372C
  51. J. Reyes, J. A. Cubillos, A. L. Villa, and C. Montes de Correa, "Efecto de la quiralidad del sustrato y del catalizador en la epoxidación diastereoselectiva de R-(+)-limoneno con complejos de salen de manganeso(III) %J Revista Facultad de Ingeniería Universidad de Antioquia," pp. 18-26, 2009.
  52. J. Guevara Pulido, J. Caicedo, F. David, M. Vela, and J. González, "Catálisis asimétrica, una nueva era en la síntesis de fármacos: historia y evolución," Revista Facultad de Ciencias Básicas, vol. 13, pp. 105-116, 02/09 2017. DOI: https://doi.org/10.18359/rfcb.2747
  53. S. Ranganathan, T. Gärtner, L. O. Wiemann, and V. Sieber, "A one pot reaction cascade of in situ hydrogen peroxide production and lipase mediated in situ production of peracids for the epoxidation of monoterpenes," Journal of Molecular Catalysis B: Enzymatic, vol. 114, pp. 72-76, 2015/04/01/ 2015. DOI: https://doi.org/10.1016/j.molcatb.2014.12.008
  54. F. Björkling, S. E. Godtfredsen, and O. Kirk, "Lipase-mediated formation of peroxycarboxylic acids used in catalytic epoxidation of alkenes," Journal of the Chemical Society, Chemical Communications, 10.1039/C39900001301 no. 19, pp. 1301-1303, 1990. DOI: https://doi.org/10.1039/C39900001301
  55. M. S. Melchiors et al., "Epoxidation of (R)-(+)-Limonene to 1,2-Limonene Oxide Mediated by Low-Cost Immobilized Candida antarctica Lipase Fraction B," Industrial & Engineering Chemistry Research, vol. 58, no. 31, pp. 13918-13925, 2019/08/07 2019. DOI: https://doi.org/10.1021/acs.iecr.9b02168
  56. H. M. Salvi and G. D. Yadav, "Chemoenzymatic Epoxidation of Limonene Using a Novel Surface-Functionalized Silica Catalyst Derived from Agricultural Waste," ACS Omega, vol. 5, no. 36, pp. 22940-22950, 2020/09/15 2020. DOI: https://doi.org/10.1021/acsomega.0c02462
  57. S. Águila, R. Vazquez-Duhalt, R. Tinoco, M. Rivera, G. Pecchi, and J. B. Alderete, "Stereoselective oxidation of R-(+)-limonene by chloroperoxidase from Caldariomyces fumago," Green Chemistry, 10.1039/B719992A vol. 10, no. 6, pp. 647-653, 2008. DOI: https://doi.org/10.1039/b719992a
  58. F. E. Castellanos, A. P. Villamil, and C. O. J. S. e. t. López, "Obtención de alcohol perílico por biotransformación del limoneno," vol. 1, no. 33, 2007.
  59. A. Armstrong, G. Ahmed, I. Garnett, K. Goacolou, and J. S. Wailes, "Exocyclic iminium salts as catalysts for alkene epoxidation by Oxone®," Tetrahedron, vol. 55, no. 8, pp. 2341-2352, 1999/02/19/ 1999. DOI: https://doi.org/10.1016/S0040-4020(99)00014-9
  60. G. Kokotos et al., "Potent and Selective Fluoroketone Inhibitors of Group VIA Calcium-Independent Phospholipase A2," Journal of Medicinal Chemistry, vol. 53, no. 9, pp. 3602-3610, 2010/05/13 2010. DOI: https://doi.org/10.1021/jm901872v
  61. D. Limnios and C. G. Kokotos, "2,2,2-Trifluoroacetophenone: An Organocatalyst for an Environmentally Friendly Epoxidation of Alkenes," The Journal of Organic Chemistry, vol. 79, no. 10, pp. 4270-4276, 2014/05/16 2014. DOI: https://doi.org/10.1021/jo5003938
  62. R. Ciriminna, F. Parrino, C. De Pasquale, L. Palmisano, and M. Pagliaro, "Photocatalytic partial oxidation of limonene to 1,2 limonene oxide," Chemical Communications, 10.1039/C7CC09788C vol. 54, no. 8, pp. 1008-1011, 2018. DOI: https://doi.org/10.1039/C7CC09788C
  63. R. F. P. Nogueira, A. G. Trovó, and W. C. Paterlini, "Evaluation of the combined solar TiO2/photo-Fenton process using multivariate analysis," Water Science and Technology, vol. 49, no. 4, pp. 195-200, 2004. DOI: https://doi.org/10.2166/wst.2004.0261
  64. J. J. Murcia Mesa, J. S. Hernández Niño, W. González, H. Rojas, M. C. Hidalgo, and J. A. Navío, "Photocatalytic Treatment of Stained Wastewater Coming from Handicraft Factories. A Case Study at the Pilot Plant Level," vol. 13, no. 19, p. 2705, 2021. DOI: https://doi.org/10.3390/w13192705
  65. M. Nayak, P. Nayak, K. Sahu, and S. Kar, "Synthesis, Characterization, and Application of Oxo-Molybdenum(V)-Corrolato Complexes in Epoxidation Reactions," The Journal of Organic Chemistry, vol. 85, no. 18, pp. 11654-11662, 2020/09/18 2020. DOI: https://doi.org/10.1021/acs.joc.0c01146
  66. H. Kargar, A. Kaka-Naeini, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, H. Amiri Rudbari, and K. S. Munawar, "Oxovanadium and dioxomolybdenum complexes: synthesis, crystal structure, spectroscopic characterization and applications as homogeneous catalysts in sulfoxidation," Journal of Coordination Chemistry, vol. 74, no. 9-10, pp. 1563-1583, 2021/05/19 2021. DOI: https://doi.org/10.1080/00958972.2021.1915488
  67. N. Quiroz Prada, E. E. Stashenko, E. A. Páez, and J. R. Martínez, "ZEOLITAS NaY INTERCAMBIADAS CON METALES DE TRANSICIÓN (Fe2+, Co2+, Mo2+, Mn2+) COMO CATALIZADORES PARA LA OXIDACIÓN DE LIMONENO," Revista Colombiana de Química, vol. 28, no. 1, pp. 45-53, 01/01 1999.
  68. R. Cid, F. Orellana, and A. López Agudo, "Effect of cobalt on stability and hydrodesulfurization activity of molybdenum containing y zeolites," Applied Catalysis, vol. 32, pp. 327-336, 1987/01/01/ 1987. DOI: https://doi.org/10.1016/S0166-9834(00)80635-1
  69. M. a. A. Aramendı́a et al., "Epoxidation of limonene over hydrotalcite-like compounds with hydrogen peroxide in the presence of nitriles," Applied Catalysis A: General, vol. 216, no. 1, pp. 257-265, 2001/08/01/ 2001. DOI: https://doi.org/10.1016/S0926-860X(01)00570-1
  70. A. L. Villa de P, D. De Vos, and P. A. Jacobs, "Epoxidación de limoneno con catalizadores heterogéneos de Mo y W," Revista Facultad de Ingeniería Universidad de Antioquia, vol. 0, no. 27, pp. 42-48, 11/30 2002.
  71. J. A. Cubillos-Lobo, L. M. González-Rodríguez, and C. Montes de Correa, "Comparación de la actividad catalítica de Ti-MCM-41 y Ti-BETA en la epoxidación de limoneno," Revista Facultad de Ingeniería Universidad de Antioquia, vol. 0, no. 26, pp. 42-53, 11/30 2002.
  72. M. V. Cagnoli et al., "“Clean” limonene epoxidation using Ti-MCM-41 catalyst," Applied Catalysis A: General, vol. 287, no. 2, pp. 227-235, 2005/06/22/ 2005. DOI: https://doi.org/10.1016/j.apcata.2005.04.001
  73. A. Villa, C. C, and R. Barrera, "Modelado de la epoxidación de limoneno con PW-Amberlita," Scientia Et Technica, 01/01 2007.
  74. W. Zhang, N. H. Lee, and E. N. Jacobsen, "Nonstereospecific Mechanisms in Asymmetric Addition to Alkenes Result in Enantiodifferentiation after the First Irreversible Step," Journal of the American Chemical Society, vol. 116, no. 1, pp. 425-426, 1994/01/01 1994. DOI: https://doi.org/10.1021/ja00080a070
  75. J. Cubillos, E. Grajales, S. Vásquez, and C. Montes de Correa, "Immobilization of Jacobsen type catalysts on modified silica %J Revista Facultad de Ingeniería Universidad de Antioquia," pp. 38-48, 2011.
  76. M. Malko et al., "Montmorillonite as the catalyst in oxidation of limonene with hydrogen peroxide and in isomerization of limonene %J Polish Journal of Chemical Technology," vol. 19, no. 4, pp. 50-58, 2017. DOI: https://doi.org/10.1515/pjct-2017-0067
  77. E. Niño-Arrieta, A. L. Villa-Holguín, E. A. Alarcón-Durango, A. Talavera-López, S. A. Gómez-Torres, and G. A. Fuentes-Zurita, "Limonene epoxidation in aqueous phase over Ti/KIT-6 %J Revista Facultad de Ingeniería Universidad de Antioquia," pp. 74-79, 2018. DOI: https://doi.org/10.17533/udea.redin.n88a08
  78. A. Gawarecka and A. Wróblewska, "Limonene oxidation over Ti-MCM-41 and Ti-MWW catalysts with t-butyl hydroperoxide as the oxidant," Reaction Kinetics, Mechanisms and Catalysis, vol. 124, 03/21 2018. DOI: https://doi.org/10.1007/s11144-018-1401-5
  79. A. Bonon, J. Bahú, B. Klein, D. Mandelli, and R. Filho, "Green Catalytic Epoxidation System: High Selectivity Production and Characterization of Limonene Diepoxide for Potential Biomedical Applications," Catalysis Today, 06/01 2020.
  80. R. Tayebee, "Steric and electronic effects in catalytic epoxidation of cis (trans)-stilbenes and R-limonene with Mn (porphyrin) OAc-NaIO 4 systems," 2002. DOI: https://doi.org/10.1002/chin.200310104
  81. M. Trytek, J. Fiedurek, K. Polska, and S. Radzki, "A Photoexcited Porphyrin System as a Biomimetic Catalyst for D-limonene Biotransformation," Catalysis Letters, vol. 105, 11/01 2005. DOI: https://doi.org/10.1007/s10562-005-8014-0
  82. M. Trytek, J. Fiedurek, and S. Radzki, "A novel porphyrin-based photocatalytic system for terpenoids production from (R)-(+)-limonene," (in eng), Biotechnol Prog, vol. 23, no. 1, pp. 131-7, Jan-Feb 2007. DOI: https://doi.org/10.1021/bp060282s
  83. A. Asatkar, M. Tripathi, and D. Asatkar, "Salen and Related Ligands," 2020. DOI: https://doi.org/10.5772/intechopen.88593
  84. J. F. Larrow, E. N. Jacobsen, Y. Gao, Y. Hong, X. Nie, and C. M. Zepp, "A Practical Method for the Large-Scale Preparation of [N,N'-Bis(3,5-di-tertbutylsalicylidene)-1,2-cyclohexanediaminato(2-)]manganese(III) chloride, a Highly Enantioselective Epoxidation Catalyst," The Journal of Organic Chemistry, vol. 59, no. 7, pp. 1939-1942, 1994/04/01 1994. DOI: https://doi.org/10.1021/jo00086a062
  85. J. F. Larrow and E. N. Jacobsen, "Asymmetric Processes Catalyzed by Chiral (Salen)Metal Complexes," in Organometallics in Process ChemistryBerlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 123-152. DOI: https://doi.org/10.1007/b11772
  86. L. D. Pinto, J. Dupont, R. F. de Souza, and K. Bernardo-Gusmão, "Catalytic asymmetric epoxidation of limonene using manganese Schiff-base complexes immobilized in ionic liquids," Catalysis Communications, vol. 9, no. 1, pp. 135-139, 2008/01/01/ 2008. DOI: https://doi.org/10.1016/j.catcom.2007.05.025
  87. J. Cubillos, I. Montilla, and C. Correa, "Easy separation and reutilization of the Jacobsen's catalyst in olefin oxidation," Applied Catalysis A-general - APPL CATAL A-GEN, vol. 366, pp. 348-352, 09/01 2009. DOI: https://doi.org/10.1016/j.apcata.2009.07.026

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a