MODIFIED STARCHES AND EMERGING TECHNOLOGIES FOR BIOFILMS PRODUCTION: A REVIEW.
Abstract
The optimization of processes for the preparation of biodegradable materials from renewable sources has been a constant challenge in the field of biotechnology. Polymers, such as starch, have been improved and applied as raw materials in both food and non-food industries. Particularly in non-food industries, including the production of biodegradable biofilms, native starch possesses unfavorable characteristics, like high hydrophilicity, water vapor permeability, low stability in acidic/basic environments and high sensitivity to environmental changes, specially humidity, temperature and pH. Therefore, the incorporation of modification methods, emerging technologies and reinforcement systems capable of counteracting these adverse characteristics has become necessary. This review focuses on research conducted over the past five years, highlighting outstanding methods of chemical modifications in starch, including cross-linking, esterification and oxidation. It also includes dual methods and emerging modification technologies, like cold plasma treatment, ozonization and the implementation of reinforcement materials with nanoparticles. Finally, the scope of the main characterization techniques employed in modified starches is detailed.
Keywords
biofilms, emerging technologies, modified starch, nanotechnology
References
- L. Yang, Y. Liu, J. Yang, C. Du and L. Zhai, “Changes in the multi-scale structure and physicochemical properties of starch during potato growth,” Journal of the Science of Food and Agriculture, vol. 101, no. 14, pp. 5927–5937, 2021, doi: 10.1002/jsfa.11245.
- L. Dai, J. Zhang and F. Cheng, “Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films,” International Journal of Biological Macromolecules, vol. 132, no. 1, pp. 897–905, 2019, doi: 10.1016/j.ijbiomac.2019.03.197.
- S. Sakkara, D. Nataraj, K. Venkatesh, Y. Xu, J. Patil and N. Reddy, “Effect of pH on the physicochemical properties of starch films,” Journal of Applied Polymer Science, vol. 137, no. 15, pp. 1–7, 2020, doi: 10.1002/app.48563.
- Z. Din, H. Xiong and P. Fei, “Physical and chemical modification of starches: A review,” Critical Reviews in Food Science and Nutrition, vol. 57, no. 12, pp. 2691–2705, 2017, doi: 10.1080/10408398.2015.1087379.
- P. Martínez, F. Peña, L. Bello, C. Núñez, H. Yee and C. Velezmoro, “Physicochemical, functional and morphological characterization of starches isolated from three native potatoes of the Andean region,” Food Chemistry: X, vol. 2, no. 1, pp. 1-8, 2019, doi: 10.1016/j.fochx.2019.100030.
- S. Punia, “Barley starch modifications: Physical, chemical and enzymatic - A review,” International Journal of Biological Macromolecules, vol. 144, no. 1, pp. 578–585, 2020, doi: 10.1016/j.ijbiomac.2019.12.088.
- J. Bemiller, "Physical Modification of Starch", Starch in Food, Elsevier Ltd, 2018, pp. 223-253.
- Y. Thakur, R. Thory, K. Sandhu, M. Kaur, A. Sinhmar and A. Pathera, “Effect of selected physical and chemical modifications on physicochemical, pasting, and morphological properties of underutilized starch from rice bean (Vigna umbellata),” Journal of Food Science and Technology, vol. 58, no. 12, pp. 4785–4794, 2021, doi: 10.1007/s13197-021-04974-0.
- E. Ojogbo, E. Ogunsona and T. Mekonnen, “Chemical and physical modifications of starch for renewable polymeric materials,” Materials Today Sustainability, vol. 7, no. 1, p. 1-78, 2020, doi: 10.1016/j.mtsust.2019.100028.
- P. Palavecino, M. Penci and P. Ribotta, “Impact of chemical modifications in pilot-scale isolated sorghum starch and commercial cassava starch,” International Journal of Biological Macromolecules, vol. 135, no. 1, pp. 521–529, 2019, doi: 10.1016/j.ijbiomac.2019.05.202.
- L. Guo, H. Tao, B. Cui and S. Janaswamy, “The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules,” Food Chemistry, vol. 277, no. 1, pp. 504–514, 2019, doi: 10.1016/j.foodchem.2018.11.014.
- H. Ji, Y. Bai, X. Li, D. Zheng, Y. Shen and Z. Jin, “Structural and property characterization of corn starch modified by cyclodextrin glycosyltransferase and specific cyclodextrinase,” Carbohydrate Polymers, vol. 237, no. 1, p. 1-33, 2020, doi: 10.1016/j.carbpol.2020.116137.
- R. Lucas, J. Almeida, T. dos Santos Pereira, V. Freire, A. Santiago, H. Lisboa, L. Conrado, R. Gusmão, “Influence of enzymatic hydrolysis on the properties of red rice starch,” International Journal of Biological Macromolecules, vol. 141, no. 1, pp. 1210–1219, 2019, doi: 10.1016/j.ijbiomac.2019.09.072.
- M. Cao and Q. Gao, “Internal structure of high degree substitution acetylated potato starch by chemical surface gelatinization,” International Journal of Biological Macromolecules, vol. 145, no. 1, pp. 133–140, 2020, doi: 10.1016/j.ijbiomac.2019.12.102.
- S. Clasen, C. Müller, A. Parize and A. Pires, “Synthesis and characterization of cassava starch with maleic acid derivatives by etherification reaction,” Carbohydrate Polymers, vol. 180, no. 1, pp. 348–353, 2018, doi: 10.1016/j.carbpol.2017.10.016.
- O. Oluwasina, F. Olaleye, S. Olusegun and N. Mohallem, “Influence of oxidized starch on physicomechanical, thermal properties and atomic force micrographs of cassava starch bioplastic film,” International Journal of Biological Macromolecules, vol. 135, no. 1, pp. 282–293, 2019, doi: 10.1016/j.ijbiomac.2019.05.150.
- A. Rahim, S. Dombus, S. Kadir1, M. Hasanuddin1, S. Laude1, J. Aditya, S. Karouw A. Rahim, “Physical, physicochemical, mechanical and sensory properties of bioplastics from phosphate acetylated arenga starches,” Polish Journal of Food and Nutrition Sciences, vol. 70, no. 3, pp. 223–231, 2020, doi: 10.31883/pjfns/120183.
- D. Verma and P. Srivastav, “Isolation, modification and characterization of rice starch with emphasis on functional properties and industrial application: a review,” Critical Reviews in Food Science and Nutrition, vol. 0, no. 0, pp. 1–28, 2021, doi: 10.1080/10408398.2021.1903383.
- S. Sukhija, S. Singh and C. Riar, “Development and characterization of biodegradable films from whey protein concentrate, psyllium husk and oxidized, crosslinked, dual-modified lotus rhizome starch composite,” Journal of the Science of Food and Agriculture, vol. 99, no. 7, pp. 3398–3409, 2019, doi: 10.1002/jsfa.9557.
- M. Shaikh, S. Haider, T. Ali and A. Hasnain, “Physical, thermal, mechanical and barrier properties of pearl millet starch films as affected by levels of acetylation and hydroxypropylation,” International Journal of Biological Macromolecules, vol. 124, no. 1, pp. 209–219, 2019, doi: 10.1016/j.ijbiomac.2018.11.135.
- R. González, M. Núñez and L. Bello, “Preparation and partial characterization of films made with dual-modified (acetylation and crosslinking) potato starch,” Journal of the Science of Food and Agriculture, vol. 99, no. 6, pp. 3134–3141, 2019, doi: 10.1002/jsfa.9528.
- S. Mehboob, T. Ali, M. Sheikh and A. Hasnain, “Effects of cross linking and/or acetylation on sorghum starch and film characteristics,” International Journal of Biological Macromolecules, vol. 155, no. 1, pp. 786–794, 2020, doi: 10.1016/j.ijbiomac.2020.03.144.
- X. Hu, X. Jia, C. Zhi, Z. Jin and M. Miao, “Improving properties of normal maize starch films using dual-modification: Combination treatment of debranching and hydroxypropylation,” International Journal of Biological Macromolecules, vol. 130, no. 1, pp. 197–202, 2019, doi: 10.1016/j.ijbiomac.2019.02.144.
- C. Sudheesh, K. V. Sunooj, A. Sasidharan, S. Sabu, A. Basheer, M. Navaf, C. Raghavender, S. lumar, J. George,"Energetic neutral N2 atoms treatment on the kithul (Caryota urens) starch biodegradable film: Physico-chemical characterization,” Food Hydrocolloids, vol. 103, no. 1. pp. 1-9, 2020, doi: 10.1016/j.foodhyd.2020.105650.
- C. La Fuente, A. Souza, C. Tadini and P. Augusto, “Ozonation of cassava starch to produce biodegradable films,” International Journal of Biological Macromolecules, vol. 141, pp. 713–720, 2019, doi: 10.1016/j.ijbiomac.2019.09.028.
- F. Ortega, V. Arce and M. Garcia, “Nanocomposite starch-based films containing silver nanoparticles synthesized with lemon juice as reducing and stabilizing agent,” Carbohydrate Polymers, vol. 252, no. 1, pp. 1-9, 2021, doi: 10.1016/j.carbpol.2020.117208.
- A. Zarski, K. Bajer and J. Kapuśniak, “Review of the most important methods of improving the processing properties of starch toward non‐food applications,” Polymers, vol. 13, no. 5, pp. 1–33, 2021, doi: 10.3390/polym13050832.
- S. Dhull, S. Punia, M. Kumar, S. Singh and P. Singh, “Effect of different modifications (physical and chemical) on morphological, pasting and rheological properties of black rice (Oryza sativa L. indica) starch: A comparative study,” Edible Medicinal And Non-Medicinal Plants, pp. 301–349, 2020, doi: 10.1007/978-94-007-5653-3_17.
- K. Dome, E. Podgorbunskikh, A. Bychkov and O. Lomovsky, “Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment,” Polymers, vol. 12, no. 3, pp. 1–12, 2020, doi: 10.3390/polym12030641.
- M. Yıldırım, H. Sadıkoğlu and M. Şeker, “Characterization of edible film based on grape juice and cross-linked maize starch and its effects on the storage quality of chicken breast fillets,” Lwt, vol. 142, no. 9, 2021, doi: 10.1016/j.lwt.2021.111012.
- L. Núñez, L. Cruz, M. Tzompole, J. Jiménez, M. Perea, W. Rosas, F. González,
- “Physicochemical, functional and structural characterization of Mexican Oxalis tuberosa
- starch modified by cross-linking,” Journal of Food Measurement and Characterization, vol. 13, no.
- , pp. 2862–2870, 2019, doi: 10.1007/s11694-019-00207-3.
- X. Wang, L. Huang, C. Zhang, Y. Deng, P. Xie, L. Liu, J. Cheng,"Research advances in chemical modifications of starch for hydrophobicity and its applications: A review," Carbohidrate polymers", vol. 240, no. 1, pp. 1-50, 2020. doi: 10.1016/j.carbpol.2020.116292.
- K. Sandhu, A. Siroha, S. Punia, L. Sangwan, M. Nehra and S. Purewal, “Effect of degree of cross linking on physicochemical, rheological and morphological properties of Sorghum starch,” Carbohydrate Polymer Technologies and Applications, vol. 2, no. 4, p. 1-8, 2021, doi: 10.1016/j.carpta.2021.100073.
- M. Yıldırım, M. Şeker and H. Sadıkoğlu, “Development and characterization of edible films based on modified corn starch and grape juice,” Food Chemistry, vol. 292, no. 1, pp. 6–13, 2019, doi: 10.1016/j.foodchem.2019.04.006.
- S. Dhull, S. Bangar, R. Deswal, P. Dhandhi and M. Kumar, M. Trif and A. Rusu “Development and Characterization of Active Native and Cross-Linked Pearl Millet Starch-Based Film Loaded with Fenugreek Oil,” foods, vol. 10, no.12, pp. 1-15, 2021, https://doi.org/10.3390/foods10123097.
- Y. Xie, B. Zhang, M. Li and H. Chen, “Effects of cross-linking with sodium trimetaphosphate on structural and adsorptive properties of porous wheat starches,” Food Chemistry, vol. 289, no. 3, pp. 187–194, 2019, doi: 10.1016/j.foodchem.2019.03.023.
- M. Torrenegra, R. Solano, A. Herrera and G. León, “Preparation of biodegradable films based on modified Colombian starches from Ipomoea batatas, Manihot esculenta, Dioscorea rotundata and Zea mays,” Materials Technology, vol. 34, no. 3, pp. 157–166, 2019, doi: 10.1080/10667857.2018.1540333.
- A. Gileta, C. Quettierb, V. Wiatzb, H. Bricouta, M. Ferreiraa, C. Rousseaua, E. Monfliera, S. Tilloy, “Unconventional media and technologies for starch etherification and esterification,” Green Chemistry, vol. 20, no. 6, pp. 1152–1168, 2018, doi: 10.1039/c7gc03135a.
- A. Zarski, K. Bajer, S. Zarska and J. Kapusniak, “From high oleic vegetable oils to hydrophobic starch derivatives: I. Development and structural studies,” Carbohydrate Polymers, vol. 214, no. 11, pp. 124–130, 2019, doi: 10.1016/j.carbpol.2019.03.034.
- D. Montoya, L. Barbosa, J. Méndez and W. Murillo, “Morphological, structural and functional evaluation of rice starch acylated in a system catalyzed by the b-lipase of Candida antarctica,” " Foods, vol. 72, no. 12, pp. 1-16, 2020, doi: 10.1002/star.202000010.
- R. Nasseri, R. Ngunjiri, C. Moresoli, A. Yu, Z. Yuan and C. Xu, “Poly(lactic acid)/acetylated starch blends: Effect of starch acetylation on the material properties,” Carbohydrate Polymers, vol. 229, no. 1, pp. 1-35 , 2020, doi: 10.1016/j.carbpol.2019.115453.
- D. Rusmawati, I. Yuliasih and T. Sunarti, “Process design of acetylated sago starch-based edible film,” IOP Conference Series: Earth and Environmental Science, vol. 443, no. 1, pp. 1-9, 2020, doi: 10.1088/1755-1315/443/1/012054.
- M. Leon, Y. Durmus, M. Ovando and S. Simsek, “Physical, barrier, mechanical and biodegradability properties of modified starch films with nut by-products extracts,” Foods, vol. 9, no. 2, pp. 1–17, 2020, doi: 10.3390/foods9020226.
- J. Li, F. Ye, L. Lei and G. Zhao, “Combined effects of octenylsuccination and oregano essential oil on sweet potato starch films with an emphasis on water resistance,” International Journal of Biological Macromolecules, vol. 115, no. 8, pp. 547–553, 2018, doi: 10.1016/j.ijbiomac.2018.04.093.
- M. Chapagai, B. Fletcher, T. Witt, S. Dhital, B. Flanagan and M. Gidley, “Multiple length scale structure-property relationships of wheat starch oxidized by sodium hypochlorite or hydrogen peroxide,” Carbohydrate Polymer Technologies and Applications, vol. 2, no. 8, pp. 1-9, 2021, doi: 10.1016/j.carpta.2021.100147.
- M. Okekunle, K. Adebowale, B. Olu-Owolabi and A. Lamprecht, “Physicochemical, morphological and thermal properties of oxidized starches from Lima bean (Phaseolus lunatus),” Scientific African, vol. 8, no. 5, pp. 1-11, 2020, doi: 10.1016/j.sciaf.2020.e00432.
- A. Adeniyi, O. Saliu, J. Ighalo, A. Olosho, D. Bankole, S. Amusat and E. Kelani, “Effects of selected bleaching agents on the functional and structural properties of orange albedo starch-based bioplastics,” Journal of Polymer Engineering, vol. 40, no. 2, pp. 120–128, 2020, doi: 10.1515/polyeng-2019-0263.
- L. Fonseca1, A. Henkes1, G. Bruni, L. Nunes, C. Motta de Moura1, W. Hernandez, A. Ferreira., “Fabrication and Characterization of Native and Oxidized Potato Starch Biodegradable Films,” Food Biophysics, vol. 13, no. 2, pp. 163–174, 2018, doi: 10.1007/s11483-018-9522-y.
- B. González, M. Robles, M. Gutiérrez, J. Padilla, C. Navarro, C. Toro, F. Rodríguez, A. Barrera, M. Zoila, M. Ávila, F. Reynoso “Combination of Sorbitol and Glycerol, as Plasticizers and Oxidized Starch Improves the Physicochemical Characteristics of Films for Food Preservation,” Polymers, vol. 13, no. 1, pp. 1–13, 2021, doi: https://doi.org/10.3390/polym13193356.
- B. Maniglia and D. Tapia, “Structural modification of fiber and starch in turmeric residue by chemical and mechanical treatment for production of biodegradable films,” International Journal of Biological Macromolecules, vol. 126, no. 1, pp. 507–516, 2019, doi: 10.1016/j.ijbiomac.2018.12.206.
- A. Ariyantoro, N. Katsuno, and T. Nishizu, “Effects of dual modification with succinylation and annealing on physicochemical, thermal and morphological properties of corn starch,” Foods, vol. 7, no. 9, pp. 1-12, 2018, doi: 10.3390/foods7090133.
- G. Narváez, J. Figueroa, J. Salcedoa, C. Pérez and R. Andrade, “Development and characterization of dual-modified yam (Dioscorea rotundata) starch-based films,” Heliyon, vol. 7, no. 4, pp. 1-8, 2021, doi: 10.1016/j.heliyon. 2021.e06644.
- Y. Tanetrungroj and J. Prachayawarakorn, “Effect of dual modification on properties of biodegradable crosslinked-oxidized starch and oxidized-crosslinked starch films,” International Journal of Biological Macromolecules, vol. 120, no. 1, pp. 1240–1246, 2018, doi: 10.1016/j.ijbiomac.2018.08.137.
- K. Zhao, A. Saleh, B. Li, H. Wu, Yu liu, G. Zhang1. W. Li1, “Effects of conventional and microwave pretreatment acetylation on structural and physicochemical properties of wheat starch,” International Journal of Food Science and Technology, vol. 53, no. 11, pp. 2515–2524, 2018, doi: 10.1111/ijfs.13845.
- B. Chen, Q. Wen, X. Zeng, R. Abdul, U. Roobab and F. Xu, “Pulsed electric field assisted modification of octenyl succinylated potato starch and its influence on pasting properties,” Carbohydrate Polymers, vol. 254, no. 10, pp. 1-40, 2021, doi: 10.1016/j.carbpol.2020.117294.
- Z. Sheikhi1, S. Marzieh, M. Reza, M. Farhoodi, K. Abdolmaleki, B. Shokri, S. Shojaee and L. Mirmoghtadaie “Treatment of starch films with a glow discharge plasma in air and O2 at low pressure,” Food Science and Technology International, vol. 27, no. 3, pp. 276–285, 2021, doi: 10.1177/1082013220948641.
- Z. Sheikhi1, L. Mirmoghtadaie, M. Khani, M. Farhoodi, S. Beikzadeh1, K. Abdolmaleki, F. Kazemian, B. Shokri and S. Shojaee, “Physicochemical characterization of argon plasma-treated starch film,” Journal of Agricultural Science and Technology, vol. 22, no. 4, pp. 999–1008, 2020.
- R. Bahrami, R. Zibaei, Z. Hashami , S. Hasanvand , F. Garavand , M. Rouhi , S. Mahdi, R. Mohammadi “Modification and improvement of biodegradable packaging films by cold plasma; a critical review,” Critical Reviews in Food Science and Nutrition, vol. 0, no. 0, pp. 1–15, 2020, doi: 10.1080/10408398.2020.1848790.
- S. Pankaj, Z. Wan and K. Keener, “Effects of cold plasma on food quality: A review,” Foods, vol. 7, no. 1, pp. 1-21, 2018, doi: 10.3390/foods7010004.
- M. Lima, E. Brito, E. Godoy, E. de Castro, F. Narciso, H. Monteiro, M. de Freitas, “Corn starch based films treated by dielectric barrier discharge plasma,” International Journal of Biological Macromolecules, vol. 183, no. May, pp. 2009–2016, 2021, doi: 10.1016/j.ijbiomac.2021.05.210.
- M. Matta, N. Castanha, C. dos Anjos, P. Augusto and S. Sarmento, “Ozone technology as an alternative to fermentative processes to improve the oven-expansion properties of cassava starch,” Food Research International, vol. 123, no. 1, pp. 56–63, 2019, doi: 10.1016/j.foodres.2019.04.050.
- E. Satmalawati, Y. Pranoto, D. Marseno and Y. Marsono, “Oxidation of cassava starch at different dissolved ozone concentration: Effect on functional and structural properties,” Food Research, vol. 4, no. 6, pp. 1896–1904, 2020, doi: 10.26656/fr.2017.4(6).209.
- N. Castanha, M. Junior, P. Duarte," Potato starch modification using the ozone technology," Food Hydrocolloids, vol. 116, no. 1, pp.1-14, 2016, doi: 10.1016/j.foodhyd.2016.12.001.
- D. Lima, J. Villar, N. Castanha, B. Maniglia, M. Matta Junior and P. Duarte Augusto, “Ozone modification of arracacha starch: Effect on structure and functional properties,” Food Hydrocolloids, vol. 108, no.2, pp. 1-12, 2020, doi: 10.1016/j.foodhyd.2020.106066.
- V. Sharma, M. Kaur, K. Sandhu, S. Kaur and M. Nehra, “Barnyard millet starch cross-linked at varying levels by sodium trimetaphosphate (STMP): Film forming, physico-chemical, pasting and thermal properties,” Carbohydrate Polymer Technologies and Applications, vol. 2, no 9, pp. 1-7, 2021, doi: 10.1016/j.carpta.2021.100161.
- C. Liu, B. Yu, H. Tao, P. Liu, H. Zhao, C. Tan, B. Cui, “Effects of soy protein isolate on mechanical and hydrophobic properties of oxidized corn starch film,” Lwt, vol. 147, no. 4, pp. 1-11, 2021, doi: 10.1016/j.lwt.2021.111529.
- P. Jutarat Prachayawarakorn, “Characterization and properties of singly and dually modified hydrogen peroxide oxidized and glutaraldehyde crosslinked biodegradable starch films,” International Journal of Biological Macromolecules, vol. 194, no. 1, pp. 331–337, 2022, doi: https://doi.org/10.1016/j.ijbiomac.2021.11.150.
- Y. Xia, G. Yang, J. Chen and Z. Lin, “Cellulose nanocrystal assisted dual-modification of starch and subsequent polyvinyl alcohol blends,” BioResources, vol. 14, no. 3, pp. 7041–7055, 2019, doi: 10.15376/biores.14.3.7041-7055.
- X. Meng, Y. Cui, X. Yan, R. Zhang, J. Wang, “Effect of dual-modified cassava starches on intelligent packaging films containing red cabbage extracts,” Food Hydrocolloids, vol. 124, no. 1, pp. 1–16, 2022, doi: https://doi.org/10.1016/j.foodhyd.2021.107225.
- Z. Sheikhi1, L. Mirmoghtadaie1, K. Abdolmaleki, M. Reza, M. Farhoodi1, E. Moradil, B. Shokri | S. Shojaee., “Characterization of physicochemical and antimicrobial properties of plasma-treated starch/chitosan composite film,” Packaging Technology and Science, vol. 34, no. 7, pp. 385–392, 2021, doi: 10.1002/pts.2559.
- C. La Fuente, N. Castanha, B. Maniglia, C. Tadini and P. Augusto, “Biodegradable Films Produced from Ozone-Modified Potato Starch,” Journal of Packaging Technology and Research, vol. 4, no. 1, pp. 3–11, 2020, doi: 10.1007/s41783-020-00082-0.
- M. Sadat, M. Khalilzadeh, M. Mohseni, F. Zamani, M. Ibrahim, V. Raissi, O. Raiesi., “Green synthesis of Ag nanoparticles from pomegranate seeds extract and synthesis of Ag-Starch nanocomposite and characterization of mechanical properties of the films,” Biocatalysis and Agricultural Biotechnology, vol. 25, no. 3, pp. 1-13, 2020, doi: 10.1016/j.bcab.2020.101569.
- C. Wang, C. Gong, Y. Qin, Y. Hu, A. Jiao, Z. Jin, C. Qiu, J. Wang, “Bioactive and functional biodegradable packaging films reinforced with nanoparticles,” Journal of Food Engineering, vol. 312, no. 7, 2021, pp. 1-14, 2022, doi: 10.1016/j.jfoodeng.2021.110752.
- S. Peighambardoust, N. Mohammadzadeh and P. Pakdel, “Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications,” Food Packaging and Shelf Life, vol. 22, no. 12, pp. 1-11, 2019, doi: 10.1016/j.fpsl.2019.100420.
- K. Dash, N. Ali, D. Das and D. Mohanta, “Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications,” International Journal of Biological Macromolecules, vol. 139, no. 1, pp. 449–458, 2019, doi: 10.1016/j.ijbiomac.2019.07.193.
- S. Hosseini, S. Pirsa and J. Farzi, “Biodegradable nano composite film based on modified starch-albumin/MgO; antibacterial, antioxidant and structural properties,” Polymer Testing, vol. 97, no. 10, 2020, pp. 1-12, 2021, doi: 10.1016/j.polymertesting.2021.107182.
- P. Salgado, L. Giorgio, Y. Musso and A. Mauri, “Bioactive Packaging: Combining Nanotechnologies with Packaging for Improved Food Functionality,” in Nanomaterials for Food Applications, vol. 0, no. 4, pp. 233–270, 2018, doi: 10.1016/B978-0-12-814130-4.00009-9.
- X. Hu, X. Jia, C. Zhi, Z. Jin and M. Miao, “Improving the properties of starch-based antimicrobial composite films using ZnO-chitosan nanoparticles,” Carbohydrate Polymers, vol. 210, no. 10, pp. 204–209, 2019, doi: 10.1016/j.carbpol.2019.01.043.
- C. Pagno, T. Costa, E. Menezes, E. Benvenutti, P. Hertz, C. Matte, J. Tosati, A. Monteiro, A. Rios, S. Flôres “Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity,” Food Chemistry, vol. 173, pp. 755–762, 2015, doi: 10.1016/j.foodchem.2014.10.068.
- C. Garcia, G. Shin and J. Kim, "Metal oxide-based nanocomposites in food packaging: Applications, migration and regulations", Trend in foof science and technology, vol. 82, no. 9, pp. 1-43, 2018. doi: 10.1016/j.tifs.2018.09.021.
- H. Wu, Y. Lei1, J. Lu, R. Zhu, D. Xiao, C. Jiao, R. Xia, Z. Zhang, G. Shen, Y. Liu, S. Li, M. Li, “Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films,” Food Hydrocolloids, vol. 97, no. 3, p. 1-12, 2019, doi: 10.1016/j.foodhyd.2019.105208.
- M. Nawaz, S. Fukai, S. Prakash and B. Bhandari, “Effect of starch modification in the whole white rice grains on physicochemical properties of two contrasting rice varieties,” Journal of Cereal Science, vol. 80, no. 1, pp. 143–149, 2018, doi: 10.1016/j.jcs.2018.02.007.