Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Oxidación avanzada usando Fe0/H2O2 como tratamiento efectivo para reciclar aguas residuales industriales para riego de cultivos.

Resumen

This study focused on developing a new Phenton treatment of water effluent coming from a local industrial estate and staining industry site. Different advanced oxidation technologies (AOTs) such as heterogeneous photocatalysis, Photo-Fenton and UV-Vis/H2O2 using FeSO4, and pure iron were evaluated. To develop this study, water samples were tested before and after each treatment. In general, after AOTs the amount of chlorides, nitrates, hydrocarbons, heavy metals, TOC and bacteria significantly decreased.  Photo-Fenton and UV-Vis/H2O2/TiO2 showed the best performance in the treatment of staining industry and industrial wastewater, respectively. Photo-Fenton mineralized 100% of dyes, reduced by 99% total coliforms, eliminated 76% of TOC and 60% of heavy metals tested. Interestingly, use of iron metal in the Photo-Fenton treatment was found to achieve similar results. This means wastewater can be treated with benign chemicals. Treated wastewater was evaluated as a potential water source for the irrigation of Lolium perenne, a conventional crop in animal feed. In general, the physical characteristics of Lolium perenne such as leaf and roof length and width, were not significantly modified after irrigation with treated wastewater. Similar results were obtained using treated tap water as reference. A trace number of metals remaining from treatment was detected in grass and soil. However, the concentration of Cd, Cr, Cu, and Zn was very similar to tap water. Considering these outcomes, use of non-toxic zero valent iron metal and hydrogen peroxide in a Photo-Fenton reaction is a pilot plant scalable alternative oxidating treatment technology for recycling industrial wastewater in agricultural activities.Top of Form

Palabras clave

Textile wastewater, industrial estate effluents, AOTs, irrigation, Lolium perenne


Citas

  1. N. Bougdour, R. Tiskatine, I. Bakas, and A. Assabbane, “Textile Wastewater Treatment by Peroxydisulfate/Fe(II)/UV: Operating Cost Evaluation and Phytotoxicity Studies,” Chem. Africa, vol. 3, no. 1, pp. 153–160, 2020, doi: 10.1007/s42250-019-00094-7.
  2. L. Villalobos and J. M. Sánchez, “Agronomic and nutritional evaluation of perennial tetraploid ryegrass-based pastures (Lolium perenne) in dairy farms on the highlands of Costa Rica. II. Nutritional value.,” Agron. Costarric., vol. 34, no. 1, pp. 43–52, 2010.
  3. S. Khalid et al., “A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries,” International Journal of Environmental Research and Public Health, vol. 15, no. 5. 2018. doi: 10.3390/ijerph15050895.
  4. S. G. Cetinkaya, M. H. Morcali, S. Akarsu, C. A. Ziba, and M. Dolaz, “Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater,” Sustain. Environ. Res., vol. 28, no. 4, pp. 165–170, 2018, doi: https://doi.org/10.1016/j.serj.2018.02.001.
  5. G. Gopalakrishnan, R. B. Jeyakumar, and A. Somanathan, “Challenges and Emerging Trends in Advanced Oxidation Technologies and Integration of Advanced Oxidation Processes with Biological Processes for Wastewater Treatment,” Sustainability, vol. 15, no. 5. 2023. doi: 10.3390/su15054235.
  6. M. Bansal, “Textile Wastewater Treatment Using Sustainable Technologies: Advanced Oxidation and Degradation Using Metal Ions and Polymeric Materials BT - Advanced Oxidation Processes in Dye-Containing Wastewater: Volume 1,” S. S. Muthu and A. Khadir, Eds., Singapore: Springer Nature Singapore, 2022, pp. 189–217. doi: 10.1007/978-981-19-0987-0_9.
  7. A. R. Lado Ribeiro, N. F. F. Moreira, G. Li Puma, and A. M. T. Silva, “Impact of water matrix on the removal of micropollutants by advanced oxidation technologies,” Chem. Eng. J., vol. 363, pp. 155–173, 2019, doi: https://doi.org/10.1016/j.cej.2019.01.080.
  8. R. Kavitha, P. M. Nithya, and S. Girish Kumar, “Noble metal deposited graphitic carbon nitride based heterojunction photocatalysts,” Appl. Surf. Sci., vol. 508, p. 145142, 2020, doi: https://doi.org/10.1016/j.apsusc.2019.145142.
  9. F. R. Lima, P. de Souza Costa Sobrinho, L. de Oliveira Ferreira Rocha, and P. Mendes de Souza, “Modeling of Listeria innocua, Escherichia coli, and Salmonella Enteritidis inactivation in milk treated by gamma irradiation,” Brazilian J. Microbiol., vol. 54, no. 2, pp. 1047–1054, 2023, doi: 10.1007/s42770-023-00931-5.
  10. S. Bolisetty, M. Peydayesh, and R. Mezzenga, “Sustainable technologies for water purification from heavy metals: review and analysis,” Chem. Soc. Rev., vol. 48, no. 2, pp. 463–487, 2019, doi: 10.1039/C8CS00493E.
  11. E. M. P. Cardoso, “Lymphocytes in the liver and hepatic iron toxicity: human and animal models of iron overload,” 2000.
  12. P. B. Ramos, P. Vitale, G. P. Barreto, F. Aparicio, M. de los Á. Dublan, and G. N. Eyler, “Treatment of real non-biodegradable wastewater: Feasibility analysis of a zero-valent iron/H2O2 process,” J. Environ. Chem. Eng., vol. 8, no. 4, p. 103954, 2020, doi: https://doi.org/10.1016/j.jece.2020.103954.
  13. C. A. Martínez-Huitle and E. Brillas, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review,” Appl. Catal. B Environ., vol. 87, no. 3, pp. 105–145, 2009, doi: https://doi.org/10.1016/j.apcatb.2008.09.017.
  14. H. A. Casierra-Martinez, C. A. Madera-Parra, X. M. Vargas-Ramírez, A. Caselles-Osorio, and W. A. Torres-López, “Diclofenac and carbamazepine removal from domestic wastewater using a Constructed Wetland-Solar Photo-Fenton coupled system,” Ecol. Eng., vol. 153, p. 105699, 2020, doi: https://doi.org/10.1016/j.ecoleng.2019.105699.
  15. F. Hosseini, A. A. Assadi, P. Nguyen-Tri, I. Ali, and S. Rtimi, “Titanium-based photocatalytic coatings for bacterial disinfection: The shift from suspended powders to catalytic interfaces,” Surfaces and Interfaces, vol. 32, p. 102078, 2022, doi: https://doi.org/10.1016/j.surfin.2022.102078.
  16. D. Chen et al., “Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review,” J. Clean. Prod., vol. 268, p. 121725, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.121725.
  17. G. Ren et al., “Recent Advances of Photocatalytic Application in Water Treatment: A Review,” Nanomaterials, vol. 11, no. 7. 2021. doi: 10.3390/nano11071804.
  18. L. Lin, W. Jiang, L. Chen, P. Xu, and H. Wang, “Treatment of Produced Water with Photocatalysis: Recent Advances, Affecting Factors and Future Research Prospects,” Catalysts, vol. 10, no. 8. 2020. doi: 10.3390/catal10080924.
  19. E. Baird, Rodger; Eaton, Andrew; Rice, “Standart Methods for the examination of water and wastewater.,” 2017. [Online]. Available: file:///C:/Users/paota/Downloads/STANDAR METHODS FOR EXAMINATION OF WATER AND WASTEWATER (1).pdf
  20. Digilife, “pH + chlorine tester for swimming pool & spa.” [Online]. Available: http://digilifeweb.com/PH-Chlorine-Tester
  21. HACH, “Nitrate, cadmium reduction method,” 2018, pp. 1–8. [Online]. Available: https://es.hach.com/sobres-de-reactivo-en-polvo-para-la-determinacion-de-nitrato-de-0-3-a-30-mg-l-de-no-n/product-downloads?id=24930070805
  22. HACH, “USEPA SulfaVer 4 method.” [Online]. Available: https://co.hach.com/sulfaver-4-sulfate-reagent-powder-pillows-25-ml-pk-1000/product?id=53559618642
  23. M. Jiménez-Tototzintle, I. Oller, A. Hernández-Ramírez, S. Malato, and M. I. Maldonado, “Remediation of agro-food industry effluents by biotreatment combined with supported TiO2/H2O2 solar photocatalysis,” Chem. Eng. J., vol. 273, pp. 205–213, 2015, doi: https://doi.org/10.1016/j.cej.2015.03.060.
  24. J. R. H. Murcia, Julie; Rojas, Wilson; Cubillos, “Planta para el tratamiento de aguas residuales con función dual floculación y fotocatálisis.” [Online]. Available: http://www.uptc.edu.co/facultades/f_ciencias/pregrado/quimica/inf_adicional/investigacion/gc/patents
  25. E. Hyánková, M. Kriška Dunajský, O. Zedník, O. Chaloupka, and M. Pumprlová Němcová, “Irrigation with Treated Wastewater as an Alternative Nutrient Source (for Crop): Numerical Simulation,” Agriculture, vol. 11, no. 10. 2021. doi: 10.3390/agriculture11100946.
  26. P. L. S. Florez, S. A. lves, P. L. Weinert, and E. R. L. Tiburtius, “Assessment of UV-Vis LED-assisted Photo-Fenton Reactor for Atrazine Degradation in Aqueous Solution,” Orbital Electron. J. Chem., vol. 13, no. 2 SE-FULL PAPERS, Jun. 2021, [Online]. Available: https://periodicos.ufms.br/index.php/orbital/article/view/15624
  27. E. Vitzilaiou, A. M. Kuria, H. Siegumfeldt, M. A. Rasmussen, and S. Knøchel, “The impact of bacterial cell aggregation on UV
  28. inactivation kinetics,” Water Res., vol. 204, p. 117593, 2021, doi: https://doi.org/10.1016/j.watres.2021.117593.
  29. T. Triquet, C. Tendero, L. Latapie, M.-H. Manero, R. Richard, and C. Andriantsiferana, “TiO2 MOCVD coating for photocatalytic degradation of ciprofloxacin using 365 nm UV LEDs - kinetics and mechanisms,” J. Environ. Chem. Eng., vol. 8, no. 6, p. 104544, 2020, doi: https://doi.org/10.1016/j.jece.2020.104544.
  30. M. A. Gil, J. J. Murcia, M. Hernández-Laverde, N. Morante, D. Sannino, and V. Vaiano, “Ag/Cr-TiO2 and Pd/Cr-TiO2 for Organic Dyes Elimination and Treatment of Polluted River Water in Presence of Visible Light,” Nanomaterials, vol. 13, no. 16. 2023. doi: 10.3390/nano13162341.
  31. R. Alexpandi et al., “Tocopherol-assisted magnetic Ag-Fe3O4-TiO2 nanocomposite for photocatalytic bacterial-inactivation with elucidation of mechanism and its hazardous level assessment with zebrafish model,” J. Hazard. Mater., vol. 442, p. 130044, 2023, doi: https://doi.org/10.1016/j.jhazmat.2022.130044.
  32. A. Shoneye, J. Sen Chang, M. N. Chong, and J. Tang, “Recent progress in photocatalytic degradation of chlorinated phenols and reduction of heavy metal ions in water by TiO2-based catalysts,” Int. Mater. Rev., vol. 67, no. 1, pp. 47–64, Jan. 2022, doi: 10.1080/09506608.2021.1891368.
  33. A. Kakoria, S. Sinha-Ray, and S. Sinha-Ray, “Industrially scalable Chitosan/Nylon-6 (CS/N) nanofiber-based reusable adsorbent for efficient removal of heavy metal from water,” Polymer (Guildf)., vol. 213, p. 123333, 2021, doi: https://doi.org/10.1016/j.polymer.2020.123333.
  34. B. Yang et al., “Dye mineralization under UV/H2O2 promoted by chloride ion at high concentration and the generation of chlorinated byproducts,” Sci. Total Environ., vol. 857, 2023, doi: 10.1016/j.scitotenv.2022.159453.
  35. M. Iqbal et al., “Using Combined UV and H2O2 Treatments to Reduce Tannery Wastewater Pollution Load,” Polish J. Environ. Stud., vol. 28, no. 5, pp. 3207–3213, 2019, doi: 10.15244/pjoes/92706.
  36. K. Tian, L. Hu, L. Li, Q. Zheng, Y. Xin, and G. Zhang, “Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment,” Chinese Chem. Lett., vol. 33, no. 10, pp. 4461–4477, 2022, doi: https://doi.org/10.1016/j.cclet.2021.12.042.
  37. R. P. Cavalcante, J. A. Malvestiti, J. P. D. Júnior, and R. F. Dantas, “Modeling carbonate/bicarbonate and nitrate disturbance during secondary effluent disinfection by UV/H2O2 and UV/ozone,” Water Sci. Technol., vol. 86, no. 11, pp. 2943–2962, Nov. 2022, doi: 10.2166/wst.2022.376.
  38. C. Pironti et al., “Comparative analysis of peracetic acid (PAA) and permaleic acid (PMA) in disinfection processes,” Sci. Total Environ., vol. 797, p. 149206, 2021, doi: https://doi.org/10.1016/j.scitotenv.2021.149206.
  39. Y. Xiang, M. Gonsior, P. Schmitt-Kopplin, and C. Shang, “Influence of the UV/H2O2 Advanced Oxidation Process on Dissolved Organic Matter and the Connection between Elemental Composition and Disinfection Byproduct Formation,” Environ. Sci. Technol., vol. 54, no. 23, pp. 14964–14973, Dec. 2020, doi: 10.1021/acs.est.0c03220.
  40. N. A. Mohamad et al., “Copperas as Iron-Based Coagulant for Water and Wastewater Treatment: A Review,” Biointerface Res. Appl. Chem., vol. 12, pp. 4155–4176, Jun. 2022, doi: 10.33263/BRIAC123.41554176.
  41. A. Eslami et al., “Periodate activation by concurrent utilization of UV and US for the degradation of para-nitrophenol in water: A synergistic approach,” Korean J. Chem. Eng., vol. 40, no. 4, pp. 882–891, 2023, doi: 10.1007/s11814-022-1247-4.
  42. I. T. Tomasi, C. A. Machado, R. A. R. Boaventura, C. M. S. Botelho, and S. C. R. Santos, “Tannin-based coagulants: Current development and prospects on synthesis and uses,” Sci. Total Environ., vol. 822, p. 153454, 2022, doi: https://doi.org/10.1016/j.scitotenv.2022.153454.
  43. B. Lange, M. Strathmann, and R. Oßmer, “Performance validation of chromogenic coliform agar for the enumeration of Escherichia coli and coliform bacteria,” Lett. Appl. Microbiol., vol. 57, no. 6, pp. 547–553, Dec. 2013, doi: https://doi.org/10.1111/lam.12147.
  44. A. Sadique et al., “Dynamics, Diversity, and Virulence of Aeromonas spp. in Homestead Pond Water in Coastal Bangladesh ,” Frontiers in Public Health , vol. 9. 2021. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fpubh.2021.692166
  45. M. Ashrafivala, S. B. Mousavi, S. Zeinali Heris, M. Heidari, M. Mohammadpourfard, and H. Aslani, “Investigation of H2O2/UV advanced oxidation process on the removal rate of coliforms from the industrial effluent: A pilot-scale study,” Int. J. Hydrogen Energy, vol. 47, no. 78, pp. 33530–33540, 2022, doi: https://doi.org/10.1016/j.ijhydene.2022.07.231.
  46. H. Ghazzaf, B. Nechchadi, A. Jouali, A. Salhi, M. El Krati, and S. Tahiri, “Synthesis of heterogeneous photo-Fenton catalyst from iron rust and its application to degradation of Acid Red 97 in aqueous medium,” J. Environ. Chem. Eng., vol. 10, no. 3, p. 107570, 2022, doi: https://doi.org/10.1016/j.jece.2022.107570.
  47. S. Guo, W. Yang, L. You, J. Li, J. Chen, and K. Zhou, “Simultaneous reduction of Cr(VI) and degradation of tetracycline hydrochloride by a novel iron-modified rectorite composite through heterogeneous photo-Fenton processes,” Chem. Eng. J., vol. 393, p. 124758, 2020, doi: https://doi.org/10.1016/j.cej.2020.124758.
  48. H. S. Dossary, F. I. Alghunaimi, and Y. C. Choi, “Produced Water Reuse for Drilling and Completion Fluids Using Ion Exchange Resins,” Abu Dhabi International Petroleum Exhibition & Conference. p. D011S007R003, Nov. 15, 2021. doi: 10.2118/207543-MS.
  49. E. Ortega-Gómez, M. M. B. Martín, B. E. García, J. A. S. Pérez, and P. F. Ibáñez, “Wastewater disinfection by neutral pH photo-Fenton: The role of solar radiation intensity,” Appl. Catal. B Environ., vol. 181, pp. 1–6, 2016, doi: https://doi.org/10.1016/j.apcatb.2015.06.059.
  50. Ö. Tuna and E. B. Simsek, “Enhanced visible-light-assisted peroxymonosulfate activation of low-cost perovskite CaFe2O4 for tartrazine degradation: Experimental design modelling,” Mater. Res. Bull., vol. 159, p. 112090, 2023, doi: https://doi.org/10.1016/j.materresbull.2022.112090.
  51. M. Tariq et al., “Removal of Rhodamine B dye from aqueous solutions using photo-Fenton processes and novel Ni-Cu@MWCNTs photocatalyst,” J. Mol. Liq., vol. 312, p. 113399, 2020, doi: https://doi.org/10.1016/j.molliq.2020.113399.
  52. A. H. Jagaba et al., “Effect of Environmental and Operational Parameters on Sequential Batch Reactor Systems in Dye Degradation
  53. BT - Dye Biodegradation, Mechanisms and Techniques: Recent Advances,” S. S. Muthu and A. Khadir, Eds., Singapore: Springer Singapore, 2022, pp. 193–225. doi: 10.1007/978-981-16-5932-4_8.
  54. J. Tejera, R. Miranda, D. Hermosilla, I. Urra, C. Negro, and Á. Blanco, “Treatment of a Mature Landfill Leachate: Comparison between Homogeneous and Heterogeneous Photo-Fenton with Different Pretreatments,” Water, vol. 11, no. 9. 2019. doi: 10.3390/w11091849.
  55. B. Yang, P. Zhou, X. Cheng, H. Li, X. Huo, and Y. Zhang, “Simultaneous removal of methylene blue and total dissolved copper in zero-valent iron/H2O2 Fenton system: Kinetics, mechanism and degradation pathway,” J. Colloid Interface Sci., vol. 555, pp. 383–393, 2019, doi: https://doi.org/10.1016/j.jcis.2019.07.071.
  56. V. Manikandan et al., “Influence of CoOx surface passivation and Sn/Zr-co-doping on the photocatalytic activity of Fe2O3 nanorod photocatalysts for bacterial inactivation and photo-Fenton degradation,” Chemosphere, vol. 337, p. 139255, 2023, doi: https://doi.org/10.1016/j.chemosphere.2023.139255.
  57. J. Suave, H. J. José, and R. de F. P. M. Moreira, “Photocatalytic degradation of polyvinylpyrrolidone in aqueous solution using TiO2/H2O2/UV system,” Environ. Technol., vol. 39, no. 11, pp. 1404–1412, Jun. 2018, doi: 10.1080/09593330.2017.1330365.
  58. R. B. Aranciaga Pajuelo, J. P. Vargas Lopez, C. Castaneda Olivera, J. L. Jave Nakayo, E. G. Benites Alfaro, and C. F. Cabrera Carranza, “Inactivation of Antibiotic Resistant Bacteria in Hospital Wastewater by Tio2/h2o2 Photocatalysis,” Chem. Eng. Trans., vol. 86, pp. 853-858 SE-Research Articles, Jun. 2021, doi: 10.3303/CET2186143.
  59. N. Nurnaeimah et al., “The Effects of Hydrogen Peroxide on Plant Growth, Mineral Accumulation, as Well as Biological and Chemical Properties of Ficus deltoidea,” Agronomy, vol. 10, no. 4. 2020. doi: 10.3390/agronomy10040599.
  60. D. Li, F. Chen, and J. Han, “A study of the treatment of high-salt chromium-containing wastewater by the photocatalysis-constructed wetland combination method,” Water Sci. Technol., vol. 80, no. 10, pp. 1956–1966, Jan. 2020, doi: 10.2166/wst.2020.017.
  61. S. Sharma et al., “Foliar application of organic and inorganic iron formulation induces differential detoxification response to improve growth and biofortification in soybean,” Plant Physiol. Reports, vol. 24, no. 1, pp. 119–128, 2019, doi: 10.1007/s40502-018-0412-6.
  62. D. K. Tripathi et al., “Acquisition and Homeostasis of Iron in Higher Plants and Their Probable Role in Abiotic Stress Tolerance ,” Frontiers in Environmental Science , vol. 5. 2018. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fenvs.2017.00086
  63. D. Goyal et al., “Effect of Heavy Metals on Plant Growth: An Overview BT - Contaminants in Agriculture: Sources, Impacts and Management,” M. Naeem, A. A. Ansari, and S. S. Gill, Eds., Cham: Springer International Publishing, 2020, pp. 79–101. doi: 10.1007/978-3-030-41552-5_4.
  64. I. Barrientos, I. Chamorro, C. Zambrano, M. Pérez, N. González, and A. K. Carrascal, “Presencia de metales pesados y calidad microbiológica de concentrados para la alimentación porcina en cuatroregiones colombianas ,” Revista de Investigaciones Veterinarias del Perú , vol. 29. scielo , pp. 774–781, 2018.
  65. N. Kuramshina et al., “Heavy metals content in meat and milk of Orenburg region of Russia.,” Int. J. Pharm. Res., vol. 11, no. 1, pp. 1031–1035, Jan. 2019, [Online]. Available: https://login.biblio.uptc.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=139070103&lang=es&site=ehost-live&scope=site

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.