Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Hidrodecloracion de diclofenaco usando nanoparticulas de hierro zerovalente ( nZVI) y nZVI soportado

Resumen

El diclofenaco (DFC)  es bien conocido como un medicamento antiinflamatorio no esteroideo y su alta producción y consumo lo convierten en un contaminante emergente. El DFC  tiende a acumularse en sistemas acuáticos induciendo la toxicidad  a lo largo de la cadena alimenticia. Desarrollando  alternativas  para la eliminación de contaminantes emergentes  es uno de los desafíos más grandes de la química ambiental, de esta manera estamos investigación esta enfocada en la hidrodecloración (HDC) de diclofenaco (DFC) usando nanoparticulas de hiero zerovalente (nZVI) soportadas en alumina  (Al2O3) y carbon activado (AC). Los catalizadores se obtuvieron a partir de Fe(NO3)3.9H2O mediante dos métodos de reducción: extracto de pino variedad Ciprés (Cupressus sempervirens) y la segunda usando  NaBH4. Los catalizadores se caracterizaron mediante el estudio de las propiedades fisicoquímicas y morfológicas caracterizadas por las técnicas de difracción de rayos X (XRD), espectroscopia fotoelectrónica de rayos X (XPS), microscopía electrónica de transmisión (TEM) y espectroscopia Raman. Las pruebas de actividad catalítica se realizaron mediante reacciones DCF HDC con cada catalizador, monitoreando constantemente con la técnica de cromatografía líquida de alta resolución (HPLC). Los catalizadores nZVI-P/CA y nZVI-P/Al2O3 presentaron buena dispersión y actividad, con conversiones cercanas al 100%. El nZVI-P/CA mostró mayor selectividad hacia los productos deseados, mientras que el nZVI-P/Al2O3 fue más estable en el tiempo. Esta investigación aborda el riesgo ambiental de la bioacumulación de este tipo de compuestos organoclorados y propone una solución prometedora para su tratamiento.

 

Palabras clave

Diclofenac; 2-Anilinophenylacetate; Hydrodechlorination; Zerovalent iron; Nanoparticles.


Citas

  1. J. N. Malagón-Rojas, C. F. Garrote-Wilches, y M. Varona, “A debt from the past: effects of organochlorines on workers in the vector control program - Colombia,” Journal of the Industrial University of Santander. Health, vol. 46, no. 3, pp. 227–235, 2014. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-08072014000300003&lng=en&nrm=iso&tlng=es
  2. J. N. Malagón Rojas, C. F. Garrote Wilches, y M. Varona, “Una deuda del pasado: efectos de los organoclorados en trabajadores del programa de control de vectores - Colombia,” Rev. Univ. Ind. Santander. Salud, vol. 46, no. 3, pp. 227–235, Oct. 2014.
  3. T. O. Ajiboye, A. T. Kuvarega, y D. C. Onwudiwe, “Recent strategies for environmental remediation of organochlorine pesticides,” Applied Sciences (Switzerland), vol. 10, no. 18, Sep. 2020, doi: 10.3390/APP10186286.
  4. O. M. L. Alharbi, A. A. Basheer, R. A. Khattab, y I. Ali, “Health and environmental effects of persistent organic pollutants,” J. Mol. Liq., vol. 263, pp. 442–453, Aug. 2018, doi: 10.1016/J.MOLLIQ.2018.05.029.
  5. M. Parolini, “Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review,” Sci. Total Environ., vol. 740, Oct. 2020, doi: 10.1016/J.SCITOTENV.2020.140043.
  6. G. I. Tovar-Aguilar, M. A. Arzate-Cardenas, y R. Rico-Martínez, “Effects of diclofenac on the freshwater rotifer Lecane papuana (Murray, 1913) (Monogononta: Lecanidae),” Hidrobiológica, vol. 29, no. 2, Mar. 2021. [Online]. Available: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-88972019000200063
  7. S. De Wildeman, G. Diekert, H. Van Langenhove, y W. Verstraete, “Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes,” Appl. Environ. Microbiol., vol. 69, no. 9, pp. 5643–5647, Sep. 2003, doi: 10.1128/AEM.69.9.5643-5647.2003.
  8. S. Chong, G. Zhang, N. Zhang, Y. Liu, T. Huang, H. Chang, “Diclofenac degradation in water by FeCeOx catalyzed H₂O₂: Influencing factors, mechanism and pathways,” J. Hazard. Mater., vol. 334, pp. 150–159, Jul. 2017, doi: 10.1016/j.jhazmat.2017.04.008.
  9. V. Muelas-Ramos, M.J. Sampaio, C.G. Silva, J. Bedia, J.J. Rodriguez, J.L. Faria, C. Belver, “Degradation of diclofenac in water under LED irradiation using combined g-C3N4/NH₂-MIL-125 photocatalysts,” J. Hazard. Mater., vol. 416, p. 126199, Aug. 2021, doi: 10.1016/J.JHAZMAT.2021.126199.
  10. J.E. Casillas, F. Tzompantzi, Guadalupe Gregorio Carbajal-Arizaga, J. Aguilar-Martínez, V.V.A. Fernández-Escamilla, Esthela Ramos-Ramírez, Miguel Angel López-Álvarez, C. Tzompantzi-Flores, A. Barrera, “Coupled Al-Ga-xAg composites prepared by the sol–gel method and their efficient photocatalytic performance in the degradation of diclofenac,” Surfaces and Interfaces, vol. 30, p. 101809, Jun. 2022, doi: 10.1016/J.SURFIN.2022.101809.
  11. M. Munoz, Z. M. de Pedro, J. A. Casas, y J. J. Rodriguez, “Improved γ-alumina-supported Pd and Rh catalysts for hydrodechlorination of chlorophenols,” Appl. Catal. A Gen., vol. 488, pp. 78–85, Nov. 2014, doi: 10.1016/J.APCATA.2014.09.035.
  12. J. Nieto-Sandoval, M. Munoz, Z. M. de Pedro, y J. A. Casas, “Fast degradation of diclofenac by catalytic hydrodechlorination,” Chemosphere, vol. 213, pp. 141–148, Dec. 2018, doi: 10.1016/j.chemosphere.2018.09.024.
  13. E.S. Lokteva, V.V. Shishova, K.I. Maslakov, E.V. Golubina, A.N. Kharlanov, I.A. Rodin, M.F. Vokuev, D.S. Filimonov, N.N. Tolkachev, “Bimetallic PdFe catalysts in hydrodechlorination of diclofenac: Influence of support nature, metal deposition sequence and reduction conditions,” Appl. Surf. Sci., vol. 613, Mar. 2023, doi: 10.1016/J.APSUSC.2022.156022.
  14. K. Wu, X. Qian, L. Chen, Z. Xu, S. Zheng y D.Zhu., “Effective liquid phase hydrodechlorination of diclofenac catalyzed by Pd/CeO₂,” RSC Adv., vol. 5, no. 24, pp. 18702–18709, Feb. 2015, doi: 10.1039/C4RA16674D.
  15. Y. Long, J. Liang, y Y. Xue, “Ultrasound-assisted electrodeposition synthesis of nZVI-Pd/AC toward reductive degradation of methylene blue,” Environ. Sci. Pollut. Res. Int., vol. 28, no. 47, pp. 67098–67107, Dec. 2021, doi: 10.1007/S11356-021-15316-0.
  16. Y. B. Hu y X. Y. Li, “Influence of a thin aluminum hydroxide coating layer on the suspension stability and reductive reactivity of nanoscale zero-valent iron,” Appl. Catal. B, vol. 226, pp. 554–564, Jun. 2018, doi: 10.1016/J.APCATB.2017.12.077.
  17. M. Rosales Castro y R. F. González Laredo, “Comparison of the content of phenolic compounds in the bark of eight pine species,” Madera y Bosques, vol. 9, no. 2, pp. 41–49, 2003. [Online]. Available: https://www.redalyc.org/pdf/617/61790204.pdf
  18. A. Ebrahiminezhad, S. Taghizadeh, Y. Ghasemi, A. Berenjian, “Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material,” Sci. Total Environ., vol. 621, pp. 1527–1532, Apr. 2018, doi: 10.1016/J.SCITOTENV.2017.10.076.
  19. N. A. Soto, W. R. Machado, y D. L. López, “Determination of kinetic parameters in the pyrolysis of cypress pine,” Quim. Nova, vol. 33, no. 7, pp. 1500–1505, 2010, doi: 10.1590/S0100-40422010000700014.
  20. M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, y R. Khosravi, “A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions,” Advanced Powder Technology, vol. 28, no. 1, pp. 122–130, 2017, doi: 10.1016/j.apt.2016.09.003.
  21. P. Santodomingo G., “Synthesis of ultrafine particles and nanoparticles from pine bark (Pinus patula) for the removal of hexavalent chromium (Cr (VI)) in contaminated waters,” Universidad de Los Andes, 2018. [Online]. Available: https://repositorio.uniandes.edu.co/bitstream/handle/1992/39189/u821069.pdf?sequence=1
  22. M. M. El-Shafei & A. Hamdy, “Zero-valent iron nanostructures: synthesis, characterization and application,” J. Environ. Biotechnol. Res., vol. 7, no. 1, pp. 1–10, 2018. [Online]. Available: www.vinanie.com/jebr
  23. V. P. Pakharukova, D. A. Yatsenko, E. Y. Gerasimov, A. S. Shalygin, O. N. Martyanov, y S. V. Tsybulya, “Coherent 3D nanostructure of γ-Al₂O₃: Simulation of whole X-ray powder diffraction pattern,” Journal of Solid State Chemistry, vol. 246, pp. 284–292, 2017, doi: 10.1016/j.jssc.2016.11.032.
  24. G. Sun, X. Mu, Y. Zhang, Y. Cui, G. Xia, Z. Chen, “Rare earth metal modified CuO/γ-Al₂O₃ catalysts in the CO oxidation,” Catal. Commun., vol. 12, no. 5, pp. 349–352, Jan. 2011, doi: 10.1016/J.CATCOM.2010.10.013.
  25. S. A. Messele, C. Bengoa, F. Stu¨ber, A. Fortuny, A. Fabregat, J. Font, “Catalytic wet peroxide oxidation of phenol using nanoscale zero-valent iron supported on activated carbon,” Desalination Water Treat., vol. 57, no. 11, pp. 5155–5164, Mar. 2015, doi: 10.1080/19443994.2014.1002011.
  26. W. Liang, C. Dai, X. Zhou, y Y. Zhang, “Application of Zero-Valent Iron Nanoparticles for the Removal of Aqueous Zinc Ions under Various Experimental Conditions,” PLOS ONE, vol. 9, no. 1, p. e85686, 2014, doi: 10.1371/journal.pone.0085686.
  27. C. Wang, Z. Xu, G. Ding, X. Wang, M. Zhao, S. Sai Hang & Yunchun Li., “Comprehensive study on the removal of chromate from aqueous solution by synthesized kaolin supported nanoscale zero-valent iron,” Desalination Water Treat., vol. 57, no. 11, pp. 5065–5078, 2016, doi: 10.1080/19443994.2014.1002430.
  28. I. C. Gerber and P. Serp, "A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts," Chemical Reviews, vol. 120, no. 2, pp. 1250-1349, Jan. 2020, doi: 10.1021/acs.chemrev.9b00209.
  29. Á. Fernández-Galiana, O. Bibikova, S. Vilms Pedersen, y M. M. Stevens, “Fundamentals and Applications of Raman-Based Techniques for the Design and Development of Active Biomedical Materials,” Adv. Mater., 2023, p. 2210807, doi: 10.1002/adma.202210807.
  30. R. S. Das y Y. K. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vibrational Spectroscopy, vol. 57, no. 2, pp. 163–176, 2011, doi: 10.1016/j.vibspec.2011.08.003.
  31. A. Liu, J. Liu, J. Han, y W.-X. Zhang, “Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides,” Journal of Hazardous Materials, vol. 322, Part A, pp. 129–135, 2017, doi: 10.1016/j.jhazmat.2015.12.070.
  32. F. Jiménez, F. Mondragón, y D. López, “Raman characterization of coal carbonizates obtained in a pressurized fixed bed reactor,” Eng. Competitiveness, vol. 14, no. 2, pp. 111–118, 2012. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-30332012000200010&lng=en&nrm=iso&tlng=es
  33. H. Mansour, H. Letifi. R. Bargougui, S. Almeida, B. Negulescu, C. Autret, A. Gadri y S. Ammar, “Structural, optical, magnetic and electrical properties of hematite (α-Fe₂O₃) nanoparticles synthesized by two methods: polyol and precipitation.” Applied Physics A Appl. Phys. A, vol. 123, 787, 2017. [Online]. Available: https://link.springer.com/article/10.1007/s00339-017-1408-1
  34. Y. Liu, B. Cheng, K. Wang, G. Ling, J. Cai, C. Song, G. Han, “Study of Raman spectra for γ-Al₂O₃ models by using first-principles methods,” Solid State Commun., vol. 178, pp. 16–22, Jan. 2014, doi: 10.1016/j.ssc.2013.09.030.
  35. I. E. Wachs, “Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts,” Catalysis Today, vol. 27, pp. 437–455, 1996, doi: 10.1016/0920-5861(95)00203-0
  36. S. Hua, J.-L. Gong, G.-M. Zeng, F.-B. Yao, M. Guo, y X.-M. Ou, “Remediation of organochlorine pesticides contaminated lake sediment using activated carbon and carbon nanotubes,” Chemosphere, vol. 177, pp. 65–76, 2017, doi: 10.1016/j.chemosphere.2017.02.133.
  37. S. Zhang, Y. He, L. Wu, J. Wan, M. Ye, T. Long, Z. Yan, X. Jiang, Y. Lin, y X. Lu, “Remediation of organochlorine pesticide-contaminated soils by surfactant-enhanced washing combined with activated carbon selective adsorption,” Pedosphere, vol. 29, no. 3, pp. 400–408, 2019, doi: 10.1016/S1002-0160(17)60328-X.
  38. S. Zhang, Y. He, L. Wu, J. Wan, M. Ye, T. Long, Z. Yan, X. Jiang, G. Xu, P. Yang, S. Yang, H. Wang, y B. Fang, “Non-natural catalysts for catalytic tar conversion in biomass gasification technology,” International Journal of Hydrogen Energy, vol. 47, no. 12, pp. 7638–7665, 2022, doi: 10.1016/j.ijhydene.2021.12.094.
  39. E. S. Lokteva, M. D. Pesotskiy, E. V. Golubina, et al., “Effect of Iron Content in Alumina-Supported Palladium Catalysts and Their Reduction Conditions on Diclofenac Hydrodechlorination in an Aqueous Medium,” Kinetics and Catalysis, vol. 65, pp. 133–154, 2024, doi: 10.1134/S0023158423601183.

Descargas

Los datos de descargas todavía no están disponibles.