Estudio de las Funciones de Coherencia de la Luz en un Sistema Jaynes Cummings no lineal
Resumen
En este trabajo se consideró un punto cuántico de dos niveles dentro de una cavidad con un medio no lineal tipo kerr y un solo modo del campo electromagnético cuantizado. Se construyó la ecuación maestra considerando procesos disipativos, el término no lineal Kerr y se solucionó numéricamente para el estado estacionario teniendo en cuenta la temperatura. A partir de estos resultados se analizó la influencia que tiene el medio no lineal en la evolución temporal del número medio de fotones, la inversión de población, el espectro de fotoluminiscencia y se determinaron las características cuánticas-clásicas del estado de la luz mediante el cálculo de las funciones de coherencia de fotones de segundo orden.
Palabras clave
óptica no lineal, punto cuántico (QD), microcavidad, fotoluminiscencia (PL), ecuación maestra, funciones de correlación, Medio Kerr, estados cuánticos de luz
Referencias
[1] E. T. Jaynes and F. W. Cummings, Comparasion of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser. Proc. Inst. Elect. Eng. 51, 89 (1963).
[2] J. Liu and Z.-Y. Li, Interaction of a two- level atom with single-mode optical field beyond the rotating wave approximation, Opt. Express, Volumen 22, pp. 28671- 28682 (2014).
[3] M. J. Werner and H. Risken, Quasiprobability dis- tributions for the cavity-damped Jaynes-Cummings model with an additional Kerr medium. Phys. Rev. A 44, 4623 (1991)
[4] O. de los Santos, C. González and J. Récamier, Non- linear Jaynes-Cummings model for two interacting two-level atoms, J. Phys. B: At. Mol. Opt. Phys. Volumen 49, 165503 (2016).
[5] M. Ghorbani, M. J. Faghihi, and H. Safari, Wigner function and entanglement dynamics of a two-atom two-mode nonlinear Jaynes- Cummings model, Jour- nal of the Optical Society of America B, Volumen 34, pp. 1884-1893 (2017).
[6] S.-P. Bu, G.-F. Zhang, J. Liu, Z.-Y. Chen, Berry phase in a two-atom Jaynes- Cummings model with Kerr medium. Phys. Scr. 78, 065008 (2008).
[7] A. Joshi and S.V Lawande, Fluorescence spectrum of a two-level atom interacting with a quantized field in a Kerr-like medium. Phys. Rev. A 46, 5906 (1991).
[8] H. R. Baghshahi, M. J. Faghihi, and M. K. Tavas-soly, Entanglement analysis of a two- atom nonlinear Jaynes-Cummings model with nondegenerate two- photon transition, Kerr nonlinearity, and two-mode Stark shift. Laser Phys. Volumen 24, 125203 (2014).
[9] B. Mojaveri, A. Dehghani , M. A. Fasihi and T. Mohammadpour, Thermal Entanglement Between Two Two-Level Atoms in a Two- Photon Jaynes-Cummings Model with an Added Kerr Medium, International Journal of Theoretical Physics, Volumen 57, pp. 3396-3409, (2018).
[10] D. Vitali, M. Fortunato, and P. Tombesi, Complete Quantum Teleportation with a Kerr Nonlinearity Phys. Rev. Lett. 85, 445 (2000).
[11] A. Joshi and R. R. Puri, Dynamical evolution of the two-photon Jaynes-Cummings model in a Kerr-like médium. Phys. Rev. A 45,5056 (1992).
[12] W. Wei, G. Guang-Can ; Preparation of Nonclassical States of a Cavity Field Based on a Nonlinear Jaynes-Cummings Model. Phys. Rev. Volumen 7, 175 (1998).
[13] E. del Valle, A. Gonzalez-Tudela, F. P. Laussy, C. Tejedor, and M. J. Hartmann. Theory of Frequency-Filtered and Time- Resolved N-Photon Correlations, Phys. Rev.Lett. 109,183601 (2012).
[14] E. del Valle, Distilling one, two and entangled pairs of photons from a quantum dot with cavity QED efects and spectral filltering, arXiv:1210.5272v2 [cond-mat.mes-hall] (2012).
[15] H. J. Carmichael, Statistical Methods in Quantum Optics, Vol. 1, Springer-Verlag Berlin Heidelberg, 1999.
[16] J. C. Gonzalez-Henao, E. Plugliese, S. Euzzor, R. Meucci and F. T. Arecchi, Control of entanglement dynamics in a system of three coupled quantum oscillators, Scientific Reports, Volumen 7, 9957 (2017)
[17] J. C. Gonzalez-Henao, E. Plugliese, S. Euzzor, S.F. Abdalah, R. Meucci and J. A. Roversi, Generation of entanglement in quantum parametric oscillators using phase control, Scientific Reports, Volumen 5, 13152 (2015)
[18] J. C. Gonzalez and J. A. Roversi, Decrease of the decay rate of the entanglement of a system of two entangled qubits by increasing the temperature of the thermal bath, Quantum Information Processing, Volumen 14, 1377-1385 (2015).
[19] G. S. Agarwal, Vacuum-field Rabi oscillations of atoms in a cavity, J.opt. Soc. Am.B, Volumen 2, No 3 (1985).
[20] G. S. Agarwal, Probing the dressed states of an atom interacting with a quantized field, Optics Communications, 202-208 (1991).
[21]M.Kronenwett,PhotonCorrelationsinTwo- Mode Cavity Quantum Electrodynamics, Trabajo de grado para optar el título en Msc en Ciencias físicas Nueva Zelanda, The University of Auckland, 110p, (2007).
[22] S. James Whalen, Photon correlation functions and photon blockade in two-mode cavity QED, Trabajo de grado para optar el título en licenciatura en física, Nueva Zelanda, The University of Auckland, 48p, (2008).
[23] F. P. Laussy, Elena del Valle, and Carlos Tejedor. Luminescence spectra of quantum dots in microcavities. Phys. Rev. B 79, 235325 (2009).
[24] E. del Valle, F. P. Laussy, and C. Tejedor, Luminescence spectra of quantum dots in microcavities. II. Fermions Phys. Rev. B 79, 235326 (2009).
[25] F. P. Laussy, E. del Valle, A. Laucht, J. J. Finley, M. Villas Boas. Luminescence spectra of quantum dots in microcavities. III. Multiple quantum dots, Phys. Rev. B 84, 195313 (2011).
[26] G. S. Agarwal, R. K. Bullow, G. P. Hildred. Exact Finite Temperature quantum statistics of single atom electrodynamics in a cavity of arbitrary Q, Optics Communications, Volumen 59 (1986).