Skip to main navigation menu Skip to main content Skip to site footer

Valorization Of Paraffin Wastes Obtained From Plastic Pyrolysis By Catalytic Cracking

Abstract

In this research it was studied the effect of the type of catalyst, the reaction temperature and the catalyst/paraffins weight ratio in the transformation of paraffins waste obtained from the pyrolysis of plastics by catalytic cracking. It was chosen the Zeolite Y and Zeolite ZSM-5 as catalysts, the catalyst/paraffin weight ratios of 0.4:1 and 0.20:1 and the reaction temperatures of 400˚C and 440˚C. The catalytic cracking reaction of the paraffins was carried out in a fixed bed reactor. By the statistical analysis it was determined that the type of catalyst has the most outstanding effect, thus with the Zeolite ZSM-5 an average yield of 27.43% was reached. In contrast, with the Zeolite Y was obtained a 13.10%. In addition, it was found that the yield increased by 1.2% when a temperature of 400 ° C was used compared to 440°C. The catalyst/paraffin weight ratio does not significantly affect the yield. According to the analyzes performed by gas chromatography to the liquid reaction products, it would be expected that through this process products like diesel, Jet A-1 aviation fuel and gasoline could be obtained. 

Keywords

Plastic waste, catalytic cracking, paraffin, gas chromatography, fuels.

PDF (Español)

References

[1] F. Gao, “Pyrolysis of waste plastic into fuels,” tesis doctoral, University of Canterbury, Nueva Zelanda, Christchurch, 2010.

[2] J. Arandes, I. Torre, P. Castaño, M. Olazar, & J. Bilbao, “Catalytic cracking of waxes produced by the fast pyrolysis of polyolefins”, Energy & Fuels, vol. 21, no 2, pp. 561-569, 2007. doi:10.1021/ef060471s

[3] F. Calderón. “Derivados de basura de plástico”. pp. 1-2. 17 de enero de 2017. URL: drcalderonlabs.com.

[4] S. Anuar, F. Abnisa, W. Ashri, & A. Kheireddine, “A review on pyrolysis of plastic wastes”, Energy Conversion and Management, vol. 115, pp. 308-326. 2016. doi: 10.1016/j.enconman.2016.02.037.

[5] J. Speight, The chemistry and technology of petroleum. Florida, Estados Unidos: CRC Press, 2014.

[6] J. Zhang, H. Shan, X. Chen, C. Li, & C. Yang, “Multifunctional two-stage riser catalytic cracking of heavy oil”, Industrial & Engineering Chemistry Research, vol. 52, no. 2, pp. 658-668, 2013. doi:10.1021/ie302650t

[7] D. Decroocq, Catalytic cracking of heavy petroleum fractions. París, Francia: Instituto Francés de Petróleo, 1984.

[8] W. Sriningsih, M. Garby Saerodji, W. Trisunaryanti, Triyono, R. Armunanto, I. Izul Falah, “Fuel Production from LDPE Plastic Waste over Natural Zeolite Supported Ni, Ni-Mo, Co and Co-Mo Metals”, Procedia Environmental Sciences, vol. 20, pp. 215-224, 2014. doi: 10.1016/j.proenv.2014.03.028

[9] X. Zhu, S. Jiang, C. Li, X. Chen, & C. Yang, “Residue catalytic cracking process for maximun ethylene and propylene production”, Industrial & Engineering Chemistry Research, vol. 52, no. 40, pp. 14366-14375, 2013. doi: 10.1021/ie401784q.

[10] S. Inagaki, S. Shinoda, Y. Kaneko, K. Takechi, R. Komatsu, Y. Tsuboi & Y. Kubota, “Facile fabrication of ZSM-5 zeolite catalyst with high durability to coke formation during catalytic cracking of paraffins”, ACS Catalysis, vol. 3, no. 1, pp. 74-78, 2012. doi:10.1021/cs300426k

[11] E. Vogt & B. Weckhuysen, “Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis”, Chemical Society Reviews, vol. 44, no. 20, pp. 7342-7370, 2015. doi:10.1039/c5cs00376h

[12] ASTM. “Standard test method for testing fluid catalytic cracking (FCC) catalysts by Microactivity test (D3907)” pp. 1-6. 2017

[13] T. Komatsu, “Catalytic cracking of paraffins on zeolite catalysts for the production of light olefins”, en Annual Catalysts in petroleum refining & petrochemicals Symposiuym Papers, Japan, Tokyo, 2010, pp. 122-131.

[14] V. Weekman, “Kinetics and dynamics of catalytic cracking selectivity in fixed-bed reactor”, Industrial & Engineering Chemistry Process Design and Development, vol. 8, no. 3, pp. 385–391. doi:10.1021/i260031a015

[15] American Petroleum Institute. “Manual of petroleum measurement standards: Chapter 11-Physical properties data” API Publications Programs and Services. Estados Unidos. 2007.

[16] J. Souza, J. Vargas, J. Ordoñez, W. Martignoni, & O. von Meien, “Thermodynamic optimization of fluidized catalytic cracking (FCC) units, International Journal of Heat and Mass Transfer, vol. 54, no. 5-6, pp. 1187-1197, 2011. doi: 10.1016/j.ijheatmasstransfer.2010.10.034

[17] N. Chang, Z. Gu, Z. Wang, Z. Liu, X. Hou, & J. Wang, “Study of Y zeolite catalysts for coal tar hydro-cracking in supercritical gasoline”, Journal of Porous Materials, vol. 18, no. 5, pp. 589-596, 2011. doi:10.1007/s10934-010-9413-1

[18] D. K. Ratnasari, M. A. Nahil, & P. T. Williams, “Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils”, Journal of Analytical and Applied Pyrolysis, vol. 124, pp. 631–637, 2017. doi: 10.1016/j.jaap.2016.12.027

[19] H. Ohkita, R. Nishiyama, Y. Tochihara, T. Mizushima, N. Kakuta, A. Ueno, Y. Namiki, S. Tanifuji, H. Katoh, H. Sunazuka, R. Nakayama, & T. Kuroyanagi, “Acid properties of silica-alumina catalysts and catalytic degradation of polyethylene”, Ind. Eng. Chem. Res., vol. 32, pp. 3112-3116. 1993. doi: 10.1021/ie00024a021

[20] N. S. Akpanudoh, K. Gobin, G. Manos, “Catalytic degradation of plastic waste to liquid fuel over commercial cracking catalysts”, J. Mol. Catal. A. Chemical, vol. 235, no. 1, pp. 67-73, 2005.

[21] D.P. Serrano, J. Aguado, & J.M. Escola, “Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals”, ACS Catalysis, vol. 2, no. 9, pp. 1924–1941, 2012. doi:10.1021/cs3003403

[22] G. Manos, Y. Yusof, N. H. Gangas, & N. Papayannakos, “Tertiary recycling of polyethylene to hydrocarbon fuel by catalytic cracking over aluminum pillared clays”, Energy & Fuels, vol. 16, no. 2, pp. 485-489, 2002. doi:10.1021/ef0102364

[23] M. Syamsiro, H. Saptoadi, T. Norsujianto, P. Noviasri, S. Chenga, Z. Alimuddin, & K. Yoshikawa, “Fuel Oil Production from Municipal Plastic Wastes in Sequential Pyrolysis and Catalytic Reforming Reactors”, Energy Procedia, vol. 47, pp. 180 – 188, 2014. doi: 10.1016/j.egypro.2014.01.212

[24] H. Sung, G. Brown, & R. White, “Thermal Cracking of petroleum”, Industrial and Engineering Chemistry, vol. 37, no. 12, pp. 1153-1161, 1945. doi.10.1021/ie50432a010

[25] Autoridad Reguladora de los Servicios Públicos. “Informe Evaluación de la calidad de los combustibles en los planteles de Recope”. 7 de junio de 2018. URL: https://aresep.go.cr/

[26] ASTM. “Standard Test Method for Boiling Range Distribution of Petroleum
Fractions by Gas Chromatography (D2887)”pp. 1-35. 2018.

[27] P. N. Sharratt, Y. H. Lin, A. A. Garforth, & J. Dwyer, “Investigation of the catalytic pyrolysis of high-density polyethylene over a HZSM-5 catalyst in a laboratory fluidized-bed reactor”, Ind. Eng. Chem. Res., vol. 36, pp. 5118–5124, 1997. doi: 10.1021/ie970348b

[28] G. San Miguel, D. P. Serrano, & J. Aguado, “Valorization of waste agricultural polyethylene film by sequential pyrolysis and catalytic reforming”, Ind. Eng. Chem. Res., vol. 48, pp. 8697–8703. 2009. doi: 10.1021/ie900776w

Downloads

Download data is not yet available.