Skip to main navigation menu Skip to main content Skip to site footer

Hydrodechloration Of Diclofenac Using Nanoparticles Of Zerovalent Iron (nZVI) and nZVI supported

Abstract

Diclofenac (DFC) is well known as a non-steroidal anti-inflammatory drug and its high production and consumption make it an emerging pollutant. DFC tends to accumulate in aquatic systems inducing toxicity along food chains. Developing alternatives for the elimination of emerging pollutants must be one of the challenges of environmental chemistry, so this research focused on the catalytic hydrodechlorination (HDC) of diclofenac (DCF) using zero-valent iron nanoparticles (nZVI) supported on alumina (Al2O3) and activated carbon (AC). The catalysts were obtained from Fe(NO3)3.9H2O by two reduction methods: extract of pine of the Cypress variety (Cupressus sempervirens) and the second one using NaBH4. The catalysts were characterized by studying the physicochemical and morphological properties characterized by the techniques of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Raman spectroscopy. Catalytic activity tests were performed by means of DCF HDC reactions with each catalyst, constantly monitoring with the high performance liquid chromatography (HPLC) technique. The nZVI-P/CA and nZVI-P/Al2O3 catalysts presented good dispersion and activity, with conversions close to 100%. The nZVI-P/CA showed greater selectivity towards the desired products, while the nZVI-P/Al2O3 was more stable over time. This research addresses the environmental risk of bioaccumulation of this type of organochlorine compounds and proposes a promising solution for their treatment

Keywords

Diclofenac; 2-Anilinophenylacetate; Hydrodechlorination; Zerovalent iron; Nanoparticles.

PDF (Español)

References

  1. J. N. Malagón-Rojas, C. F. Garrote-Wilches, y M. Varona, “A debt from the past: effects of organochlorines on workers in the vector control program - Colombia,” Journal of the Industrial University of Santander. Health, vol. 46, no. 3, pp. 227–235, 2014. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-08072014000300003&lng=en&nrm=iso&tlng=es
  2. J. N. Malagón Rojas, C. F. Garrote Wilches, y M. Varona, “Una deuda del pasado: efectos de los organoclorados en trabajadores del programa de control de vectores - Colombia,” Rev. Univ. Ind. Santander. Salud, vol. 46, no. 3, pp. 227–235, Oct. 2014.
  3. T. O. Ajiboye, A. T. Kuvarega, y D. C. Onwudiwe, “Recent strategies for environmental remediation of organochlorine pesticides,” Applied Sciences (Switzerland), vol. 10, no. 18, Sep. 2020, doi: 10.3390/APP10186286.
  4. O. M. L. Alharbi, A. A. Basheer, R. A. Khattab, y I. Ali, “Health and environmental effects of persistent organic pollutants,” J. Mol. Liq., vol. 263, pp. 442–453, Aug. 2018, doi: 10.1016/J.MOLLIQ.2018.05.029.
  5. M. Parolini, “Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review,” Sci. Total Environ., vol. 740, Oct. 2020, doi: 10.1016/J.SCITOTENV.2020.140043.
  6. G. I. Tovar-Aguilar, M. A. Arzate-Cardenas, y R. Rico-Martínez, “Effects of diclofenac on the freshwater rotifer Lecane papuana (Murray, 1913) (Monogononta: Lecanidae),” Hidrobiológica, vol. 29, no. 2, Mar. 2021. [Online]. Available: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-88972019000200063
  7. S. De Wildeman, G. Diekert, H. Van Langenhove, y W. Verstraete, “Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes,” Appl. Environ. Microbiol., vol. 69, no. 9, pp. 5643–5647, Sep. 2003, doi: 10.1128/AEM.69.9.5643-5647.2003.
  8. S. Chong, G. Zhang, N. Zhang, Y. Liu, T. Huang, H. Chang, “Diclofenac degradation in water by FeCeOx catalyzed H₂O₂: Influencing factors, mechanism and pathways,” J. Hazard. Mater., vol. 334, pp. 150–159, Jul. 2017, doi: 10.1016/j.jhazmat.2017.04.008.
  9. V. Muelas-Ramos, M.J. Sampaio, C.G. Silva, J. Bedia, J.J. Rodriguez, J.L. Faria, C. Belver, “Degradation of diclofenac in water under LED irradiation using combined g-C3N4/NH₂-MIL-125 photocatalysts,” J. Hazard. Mater., vol. 416, p. 126199, Aug. 2021, doi: 10.1016/J.JHAZMAT.2021.126199.
  10. J.E. Casillas, F. Tzompantzi, Guadalupe Gregorio Carbajal-Arizaga, J. Aguilar-Martínez, V.V.A. Fernández-Escamilla, Esthela Ramos-Ramírez, Miguel Angel López-Álvarez, C. Tzompantzi-Flores, A. Barrera, “Coupled Al-Ga-xAg composites prepared by the sol–gel method and their efficient photocatalytic performance in the degradation of diclofenac,” Surfaces and Interfaces, vol. 30, p. 101809, Jun. 2022, doi: 10.1016/J.SURFIN.2022.101809.
  11. M. Munoz, Z. M. de Pedro, J. A. Casas, y J. J. Rodriguez, “Improved γ-alumina-supported Pd and Rh catalysts for hydrodechlorination of chlorophenols,” Appl. Catal. A Gen., vol. 488, pp. 78–85, Nov. 2014, doi: 10.1016/J.APCATA.2014.09.035.
  12. J. Nieto-Sandoval, M. Munoz, Z. M. de Pedro, y J. A. Casas, “Fast degradation of diclofenac by catalytic hydrodechlorination,” Chemosphere, vol. 213, pp. 141–148, Dec. 2018, doi: 10.1016/j.chemosphere.2018.09.024.
  13. E.S. Lokteva, V.V. Shishova, K.I. Maslakov, E.V. Golubina, A.N. Kharlanov, I.A. Rodin, M.F. Vokuev, D.S. Filimonov, N.N. Tolkachev, “Bimetallic PdFe catalysts in hydrodechlorination of diclofenac: Influence of support nature, metal deposition sequence and reduction conditions,” Appl. Surf. Sci., vol. 613, Mar. 2023, doi: 10.1016/J.APSUSC.2022.156022.
  14. K. Wu, X. Qian, L. Chen, Z. Xu, S. Zheng y D.Zhu., “Effective liquid phase hydrodechlorination of diclofenac catalyzed by Pd/CeO₂,” RSC Adv., vol. 5, no. 24, pp. 18702–18709, Feb. 2015, doi: 10.1039/C4RA16674D.
  15. Y. Long, J. Liang, y Y. Xue, “Ultrasound-assisted electrodeposition synthesis of nZVI-Pd/AC toward reductive degradation of methylene blue,” Environ. Sci. Pollut. Res. Int., vol. 28, no. 47, pp. 67098–67107, Dec. 2021, doi: 10.1007/S11356-021-15316-0.
  16. Y. B. Hu y X. Y. Li, “Influence of a thin aluminum hydroxide coating layer on the suspension stability and reductive reactivity of nanoscale zero-valent iron,” Appl. Catal. B, vol. 226, pp. 554–564, Jun. 2018, doi: 10.1016/J.APCATB.2017.12.077.
  17. M. Rosales Castro y R. F. González Laredo, “Comparison of the content of phenolic compounds in the bark of eight pine species,” Madera y Bosques, vol. 9, no. 2, pp. 41–49, 2003. [Online]. Available: https://www.redalyc.org/pdf/617/61790204.pdf
  18. A. Ebrahiminezhad, S. Taghizadeh, Y. Ghasemi, A. Berenjian, “Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material,” Sci. Total Environ., vol. 621, pp. 1527–1532, Apr. 2018, doi: 10.1016/J.SCITOTENV.2017.10.076.
  19. N. A. Soto, W. R. Machado, y D. L. López, “Determination of kinetic parameters in the pyrolysis of cypress pine,” Quim. Nova, vol. 33, no. 7, pp. 1500–1505, 2010, doi: 10.1590/S0100-40422010000700014.
  20. M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, y R. Khosravi, “A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions,” Advanced Powder Technology, vol. 28, no. 1, pp. 122–130, 2017, doi: 10.1016/j.apt.2016.09.003.
  21. P. Santodomingo G., “Synthesis of ultrafine particles and nanoparticles from pine bark (Pinus patula) for the removal of hexavalent chromium (Cr (VI)) in contaminated waters,” Universidad de Los Andes, 2018. [Online]. Available: https://repositorio.uniandes.edu.co/bitstream/handle/1992/39189/u821069.pdf?sequence=1
  22. M. M. El-Shafei & A. Hamdy, “Zero-valent iron nanostructures: synthesis, characterization and application,” J. Environ. Biotechnol. Res., vol. 7, no. 1, pp. 1–10, 2018. [Online]. Available: www.vinanie.com/jebr
  23. V. P. Pakharukova, D. A. Yatsenko, E. Y. Gerasimov, A. S. Shalygin, O. N. Martyanov, y S. V. Tsybulya, “Coherent 3D nanostructure of γ-Al₂O₃: Simulation of whole X-ray powder diffraction pattern,” Journal of Solid State Chemistry, vol. 246, pp. 284–292, 2017, doi: 10.1016/j.jssc.2016.11.032.
  24. G. Sun, X. Mu, Y. Zhang, Y. Cui, G. Xia, Z. Chen, “Rare earth metal modified CuO/γ-Al₂O₃ catalysts in the CO oxidation,” Catal. Commun., vol. 12, no. 5, pp. 349–352, Jan. 2011, doi: 10.1016/J.CATCOM.2010.10.013.
  25. S. A. Messele, C. Bengoa, F. Stu¨ber, A. Fortuny, A. Fabregat, J. Font, “Catalytic wet peroxide oxidation of phenol using nanoscale zero-valent iron supported on activated carbon,” Desalination Water Treat., vol. 57, no. 11, pp. 5155–5164, Mar. 2015, doi: 10.1080/19443994.2014.1002011.
  26. W. Liang, C. Dai, X. Zhou, y Y. Zhang, “Application of Zero-Valent Iron Nanoparticles for the Removal of Aqueous Zinc Ions under Various Experimental Conditions,” PLOS ONE, vol. 9, no. 1, p. e85686, 2014, doi: 10.1371/journal.pone.0085686.
  27. C. Wang, Z. Xu, G. Ding, X. Wang, M. Zhao, S. Sai Hang & Yunchun Li., “Comprehensive study on the removal of chromate from aqueous solution by synthesized kaolin supported nanoscale zero-valent iron,” Desalination Water Treat., vol. 57, no. 11, pp. 5065–5078, 2016, doi: 10.1080/19443994.2014.1002430.
  28. I. C. Gerber and P. Serp, "A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts," Chemical Reviews, vol. 120, no. 2, pp. 1250-1349, Jan. 2020, doi: 10.1021/acs.chemrev.9b00209.
  29. Á. Fernández-Galiana, O. Bibikova, S. Vilms Pedersen, y M. M. Stevens, “Fundamentals and Applications of Raman-Based Techniques for the Design and Development of Active Biomedical Materials,” Adv. Mater., 2023, p. 2210807, doi: 10.1002/adma.202210807.
  30. R. S. Das y Y. K. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vibrational Spectroscopy, vol. 57, no. 2, pp. 163–176, 2011, doi: 10.1016/j.vibspec.2011.08.003.
  31. A. Liu, J. Liu, J. Han, y W.-X. Zhang, “Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides,” Journal of Hazardous Materials, vol. 322, Part A, pp. 129–135, 2017, doi: 10.1016/j.jhazmat.2015.12.070.
  32. F. Jiménez, F. Mondragón, y D. López, “Raman characterization of coal carbonizates obtained in a pressurized fixed bed reactor,” Eng. Competitiveness, vol. 14, no. 2, pp. 111–118, 2012. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-30332012000200010&lng=en&nrm=iso&tlng=es
  33. H. Mansour, H. Letifi. R. Bargougui, S. Almeida, B. Negulescu, C. Autret, A. Gadri y S. Ammar, “Structural, optical, magnetic and electrical properties of hematite (α-Fe₂O₃) nanoparticles synthesized by two methods: polyol and precipitation.” Applied Physics A Appl. Phys. A, vol. 123, 787, 2017. [Online]. Available: https://link.springer.com/article/10.1007/s00339-017-1408-1
  34. Y. Liu, B. Cheng, K. Wang, G. Ling, J. Cai, C. Song, G. Han, “Study of Raman spectra for γ-Al₂O₃ models by using first-principles methods,” Solid State Commun., vol. 178, pp. 16–22, Jan. 2014, doi: 10.1016/j.ssc.2013.09.030.
  35. I. E. Wachs, “Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts,” Catalysis Today, vol. 27, pp. 437–455, 1996, doi: 10.1016/0920-5861(95)00203-0
  36. S. Hua, J.-L. Gong, G.-M. Zeng, F.-B. Yao, M. Guo, y X.-M. Ou, “Remediation of organochlorine pesticides contaminated lake sediment using activated carbon and carbon nanotubes,” Chemosphere, vol. 177, pp. 65–76, 2017, doi: 10.1016/j.chemosphere.2017.02.133.
  37. S. Zhang, Y. He, L. Wu, J. Wan, M. Ye, T. Long, Z. Yan, X. Jiang, Y. Lin, y X. Lu, “Remediation of organochlorine pesticide-contaminated soils by surfactant-enhanced washing combined with activated carbon selective adsorption,” Pedosphere, vol. 29, no. 3, pp. 400–408, 2019, doi: 10.1016/S1002-0160(17)60328-X.
  38. S. Zhang, Y. He, L. Wu, J. Wan, M. Ye, T. Long, Z. Yan, X. Jiang, G. Xu, P. Yang, S. Yang, H. Wang, y B. Fang, “Non-natural catalysts for catalytic tar conversion in biomass gasification technology,” International Journal of Hydrogen Energy, vol. 47, no. 12, pp. 7638–7665, 2022, doi: 10.1016/j.ijhydene.2021.12.094.
  39. E. S. Lokteva, M. D. Pesotskiy, E. V. Golubina, et al., “Effect of Iron Content in Alumina-Supported Palladium Catalysts and Their Reduction Conditions on Diclofenac Hydrodechlorination in an Aqueous Medium,” Kinetics and Catalysis, vol. 65, pp. 133–154, 2024, doi: 10.1134/S0023158423601183.

Downloads

Download data is not yet available.