Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Nanopartículas: Una prometedora alternativa para el tratamiento del cáncer de seno

Resumen

El cáncer de seno (CS) es una enfermedad común y representa uno de los mayores problemas de salud en el mundo, siendo por ende una preocupación global significativa considerando el alto porcentaje de nuevos casos diagnosticados (2.261.419), y el número de muertes atribuidas a esta enfermedad (684.996) en el 2020. Las decisiones terapéuticas para pacientes con CS, se basan principalmente en la evaluación de parámetros clínicos y patológicos. En particular, la evaluación inmunohistoquímica de factores pronósticos, la clasificación del subtipo tumoral, el marcador de proliferación celular Ki67 y el grado histológico, entre otros, desempeñan un papel importante en la planificación de las estrategias terapéuticas. Sin embargo, aunque este ha sido un enfoque exitoso, algunos pacientes recaen y/o eventualmente desarrollan resistencia. Por lo tanto, el desarrollo de mecanismos de terapia blanco específicos se convierten en una necesidad. Dentro de estos tratamientos, las nanopartículas (NPs) se han constituido en los últimos años, como una prometedora alternativa de terapias dirigidas, ya que permiten potencializar las propiedades farmacocinéticas de los medicamentos. Las NPs pueden brindar una gran oportunidad para tratar el CS, debido a que se aprovechan las características propias del tumor para una eficaz orientación del fármaco con potencial antitumoral. Considerando lo anterior, esta revisión se centra en estudios recientes que destacan el uso de NPs como un sistema prometedor para la administración dirigida de fármacos en el tratamiento de CS.

Palabras clave

Terapia dirigida, Nanotransportadores, Administración de fármacos

PDF

Citas

  1. Aghebati‐Maleki, A., Dolati, S., Ahmadi, M., Baghbanzhadeh, A., Asadi, M.,
  2. Fotouhi, A., ... & Aghebati‐Maleki, L. (2020). Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. Journal of cellular physiology, 235(3), 1962-1972.
  3. Anselmo A.C., Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release. 2014;190:15–28. doi: 10.1016/j.jconrel.2014.03.053.
  4. Aoki, H., Takada, Y., Kondo, S., Sawaya, R., Aggarwal, B. B., & Kondo, Y. (2007). Evidence That Curcumin Suppresses the
  5. Growth of Malignant Gliomas in Vitro and in Vivo through Induction of Autophagy: Role of Akt and Extracellular Signal-Regulated Kinase Signaling Pathways. Molecular Pharmacology, 72(1), 29–39. doi:10.1124/mol.106.033167
  6. Bawarski, W. E., Chidlowsky, E., Bharali, D. J., & Mousa, S. A. (2008). Emerging nanopharmaceuticals. Nanomedicine: Nanotechnology, Biology and Medicine, 4(4), 273-282.
  7. Bazak, R., Houri, M., Achy, S. EL, Hussein, W., & Refaat, T. (2014). Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Molecular and Clinical Oncology, 2(6), 904–908. https://doi.org/10.3892/mco.2014.356
  8. Berger, A. M., Gerber, L. H., & Mayer, D. K. (2012). Cancer-related fatigue: Implications for breast cancer survivors. Cancer, 118(SUPPL.8), 2261–2269. https://doi.org/10.1002/cncr.27475
  9. Blanco E., Shen H., Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015;33:941. doi: 10.1038/nbt.3330.
  10. Brinkman, A. M., Chen, G., Wang, Y., Hedman, C. J., Sherer, N. M., Havighurst, T. C., … Xu, W. (2016). Aminoflavone-loaded EGFR-targeted unimolecular micelle nanoparticles exhibit anti-cancer effects in triple negative breast cancer. Biomaterials, 101, 20–31. doi:10.1016/j.biomaterials.2016.05.041
  11. Canese, R., Vurro, F., & Marzola, P. (2021). Iron oxide nanoparticles as theranostic agents in cancer immunotherapy. Nanomaterials, 11(8), 1–16. https://doi.org/10.3390/nano11081950
  12. Carrick, S., Parker, S., Thornton, C. E., Ghersi, D., Simes, J., & Wilcken, N. (2009). Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.cd003372.pub3
  13. Cheng, C. J., Tietjen, G. T., Saucier-Sawyer, J. K., & Saltzman, W. M. (2015). A holistic approach to targeting disease with polymeric nanoparticles. Nature Reviews Drug Discovery, 14(4), 239–247. doi:10.1038/nrd4503
  14. Esfandiari, N., Arzanani, M. K., Soleimani, M., Kohi-Habibi, M., & Svendsen, W. E. (2016). A new application of plant virus nanoparticles as drug delivery in breast cancer. Tumor Biology, 37(1), 1229-1236.
  15. Danhier F. (2016). To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control Rel. 244(Pt A), 108–121. doi: 10.1016/j.jconrel.2016.11.015
  16. Davis, M. E., Chen, Z., & Shin, D. M. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery, 7(9), 771–782. doi:10.1038/nrd2614
  17. Dear, R. F., McGeechan, K., Jenkins, M. C., Barratt, A., Tattersall, M. H., & Wilcken, N. (2013). Combination versus sequential single agent chemotherapy for metastatic breast cancer. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.cd008792.pub2
  18. De Sousa Marcial, S. P., Carneiro, G., & Leite, E. A. (2017). Lipid-based nanoparticles as drug delivery system for paclitaxel in breast cancer treatment. Journal of Nanoparticle Research, 19(10), 1-11.
  19. Ding, L., Li, J., Huang, R., Liu, Z., Li, C., Yao, S., … Pi, J. (2016). Salvianolic acid B protects against myocardial damage caused by nanocarrier TiO2; and synergistic anti-breast carcinoma effect with curcumin via codelivery system of folic acid-targeted and polyethylene glycol-modified TiO2 nanoparticles. International Journal of Nanomedicine, Volume 11, 5709–5727. doi:10.2147/ijn.s107767
  20. Dhankhar, R., Vyas, S. P., Jain, A. K., Arora, S., Rath, G., & Goyal, A. K. (2010). Advances in novel drug delivery strategies for breast cancer therapy. Artificial Cells, Blood Substitutes, and Biotechnology, 38(5), 230-249.
  21. Du, M., Ouyang, Y., Meng, F., Ma, Q., Liu, H., Zhuang, Y., Pang, M., Cai, T., & Cai, Y. (2019). Nanotargeted agents: an emerging therapeutic strategy for breast cancer. Nanomedicine, 14(13), 1771–1786. https://doi.org/10.2217/nnm-2018-0481
  22. D’souza, A. A., & Shegokar, R. (2016). Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opinion on Drug Delivery, 13(9), 1257–1275. doi:10.1080/17425247.2016.1182485
  23. Gong, J., Chen, M., Zheng, Y., Wang, S., & Wang, Y. (2012). Polymeric micelles drug delivery system in oncology. Journal of Controlled Release, 159(3), 312-323.
  24. Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: formation, properties and applications. Soft Matter, 12(11), 2826–2841. doi:10.1039/c5sm02958a
  25. GLOBOCAN, & WHO. (2018). Mes de sensibilización sobre el cáncer de mama. https://www.who.int/es/news-room/fact-sheets/detail/breast-cancer
  26. Gumuskaya, B., Alper, M., Hucumenoglu, S., Altundag, K., Uner, A., & Guler, G. (2010). EGFR expression and gene copy number in triple-negative breast carcinoma. Cancer Genetics and Cytogenetics, 203(2), 222–229. doi:10.1016/j.cancergencyto.2010.07.118
  27. Hahm, E.-R., Gho, Y. S., Park, S., Park, C., Kim, K.-W., & Yang, C.-H. (2004). Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochemical and Biophysical Research Communications, 321(2), 337–344. doi:10.1016/j.bbrc.2004.06.119
  28. Hanafi-Bojd, M. Y., Jaafari, M. R., Ramezanian, N., Xue, M., Amin, M., Shahtahmassebi, N., & Malaekeh-Nikouei, B. (2015). Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 89, 248-258.
  29. Haque S.T., Karim M., Abidin S.A.Z., Othman I., Holl M.M.B., Chowdhury E.H. Fe/Mg-Modified Carbonate Apatite with Uniform Particle Size and Unique Transport Protein-Related Protein Corona Efficiently Delivers Doxorubicin into Breast Cancer Cells. Nanomaterials. 2020;10:834. doi: 10.3390/nano10050834.
  30. Jahan S, Karim ME, Chowdhury EH. Nanoparticles Targeting Receptors on Breast Cancer for Efficient Delivery of Chemotherapeutics. Biomedicines. 2021 Jan 26;9(2):114. doi: 10.3390/biomedicines9020114. PMID: 33530291; PMCID: PMC7910939.
  31. Jarzyna, P. A., Gianella, A., Skajaa, T., Knudsen, G., Deddens, L. H., Cormode, D. P., Mulder, W. J. M. (2010). Multifunctional imaging nanoprobes. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2(2), 138–150. https://doi.org/10.1002/wnan.72.
  32. Karra, N., & Benita, S. (2012). The ligand nanoparticle conjugation approach for targeted cancer therapy. Current Drug Metabolism, 13(1), 22–41.
  33. Kim, J. S., Yoon, T.-J., Yu, K. N., Kim, B. G., Park, S. J., Kim, H. W., … Cho, M. H. (2005). Toxicity and Tissue Distribution of Magnetic Nanoparticles in Mice. Toxicological Sciences, 89(1), 338–347. doi:10.1093/toxsci/kfj027
  34. Kurmi B.D., Patel P., Paliwal R., Paliwal S.R. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. J. Drug Deliv. Sci. Technol. 2020;57:101682. doi: 10.1016/j.jddst.2020.101682.
  35. Le, D. H., Lee, K. L., Shukla, S., Commandeur, U., & Steinmetz, N. F. (2017). Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale, 9(6), 2348-2357.
  36. Liyanage, P. Y., Hettiarachchi, S. D., Zhou, Y., Ouhtit, A., Seven, E. S., Oztan, C. Y., Celik, E., & Leblanc, R. M. (2019). Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica et Biophysica Acta - Reviews on Cancer, 1871(2), 419–433. https://doi.org/10.1016/j.bbcan.2019.04.006
  37. Lozano-Ocaña Y, Tubón-Usca I, Vaca-Altamirano G, Tubón-Usca G. (2022). Métodos de obtención y aplicación de nanopartículas magnéticas en el tratamiento y diagnóstico del cáncer: una revisión. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 46(178):7-26. doi: https://doi.org/10.18257/raccefyn.1560
  38. Markman, M., & Mekhail, T. M. (2002). Paclitaxel in cancer therapy. Expert Opinion on Pharmacotherapy, 3(6), 755–766. doi:10.1517/14656566.3.6.755
  39. Mo R., Jiang T., Gu Z. Recent progress in multidrug delivery to cancer cells by liposomes. Nanomedicine. 2014;9:1117–1120. doi: 10.2217/nnm.14.62.
  40. Mehrgou, A., & Akouchekian, M. (2016). The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Medical Journal of the Islamic Republic of Iran, 30(1), 1–12.
  41. Mejía, M., Contreras, A., & Hernández-Carrillo, M. (2020). Calidad de vida en mujeres con cáncer de mama sometidas a quimioterapia en Cali-Colombia. Biomédica, 33(4), 24.
  42. Morent, R., De Geyter, N., Desmet, T., Dubruel, P., & Leys, C. (2011). Plasma Surface Modification of Biodegradable Polymers: A Review. Plasma Processes and Polymers, 8(3), 171–190. doi:10.1002/ppap.201000153
  43. Mo R., Jiang T., Gu Z. Recent progress in multidrug delivery to cancer cells by liposomes. Nanomedicine. 2014;9:1117–1120. doi: 10.2217/nnm.14.62.
  44. Mu, Q., Wang, H., & Zhang, M. (2017). Nanoparticles for imaging and treatment of metastatic breast cancer. In Expert Opinion on Drug Delivery (Vol. 14, Issue 1). https://doi.org/10.1080/17425247.2016.1208650
  45. Nag O.K., Delehanty J.B. Active cellular and subcellular targeting of nanoparticles for drug delivery. Pharmaceutics. 2019;11:543. doi: 10.3390/pharmaceutics11100543.
  46. Niazvand, F., Orazizadeh, M., Khorsandi, L., Abbaspour, M., Mansouri, E., & Khodadadi, A. (2019). Effects of Quercetin-Loaded Nanoparticles on MCF-7 Human Breast Cancer Cells. Medicina, 55(4), 114. MDPI AG. http://dx.doi.org/10.3390/medicina55040114
  47. Oropesa-Nuñez, R., & Jáuregui-Haza, U. J. (2012). Las nanopartículas como portadores de fármacos: características y perspectivas Nanoparticles as drug carriers: characteristics and perspectives. Revista CENIC ciencias biológicas, 43(3).
  48. Revia, R. A., & Zhang, M. (2016). Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances. Materials Today, 19(3), 157–168. https://doi.org/10.1016/j.mattod.2015.08.022
  49. Rosenblum D., Peer D. Omics-based nanomedicine: The future of personalized oncology. Cancer Lett. 2014;352:126–136. doi: 10.1016/j.canlet.2013.07.029.
  50. Salvadormorales, C., Flahaut, E., SIM, E., SLOAN, J., HGREEN, M., & SIM, R. (2006). Complement activation and protein adsorption by carbon nanotubes. Molecular Immunology, 43(3), 193–201. doi:10.1016/j.molimm.2005.02.006
  51. Senapati, S., Mahanta, A. K., Kumar, S., & Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 3, 7. https://doi.org/10.1038/s41392‐017‐0004‐3.
  52. Sengupta, S., Eavarone, D., Capila, I., Zhao, G., Watson, N., Kiziltepe, T., & Sasisekharan, R. (2005). Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 436(7050), 568–572. doi:10.1038/nature03794
  53. Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28–49. doi:10.1016/j.jconrel.2017.03.008
  54. Shi J., Kantoff P.W., Wooster R., Farokhzad O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer. 2017;17:20. doi: 10.1038/nrc.2016.108.
  55. Shimada, T.; Ueda, M.; Jinno, H.; Chiba, N.; Wada, M.; Watanabe, J. (2010). Development of targeted therapy with paclitaxel incorporated into EGF-conjugated nanoparticles. Anticancer Res. 29, 1009–1014.
  56. Soussan E., Cassel S., Blanzat M., Rico-Lattes I. Drug delivery by soft matter: Matrix and vesicular carriers. Angew. Chem. Int. Ed. 2010;48:274–288. doi: 10.1002/anie.200802453.
  57. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  58. Wang, A. Z., Gu, F., Zhang, L., Chan, J. M., Radovic-Moreno, A., Shaikh, M. R., & Farokhzad, O. C. (2008). Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opinion on Biological Therapy, 8(8), 1063–1070. doi:10.1517/14712598.8.8.1063
  59. Wang, Z., Luo, P., Dai, S., Liu, Z., Zheng, X., & Chen, T. (2013). Salvianolic Acid B Induces Apoptosis in Human Glioma U87 Cells Through p38-Mediated ROS Generation. Cellular and Molecular Neurobiology, 33(7), 921–928. doi:10.1007/s10571-013-9958-z
  60. Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016;1:1–12. doi: 10.1038/natrevmats.2016.14.
  61. World health organization, International agency for research on cancer, G. cancer observatory. (2020). Cancer today view colombia. https://gco.iarc.fr/today/online-analysis-pie?v=2020&mode=cancer&mode_population=continents&population=900&populations=170&key=total&sex=0&cancer=39&type=2&statistic=5&prevalence=1&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=7&group_cancer=1&include_nmsc=1&include_nmsc_other=1&half_pie=0&donut=0#collapse-group-0-1
  62. Xiang D, Shigdar S, Qiao G et al. (2015). Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics 5(1), 23–42. doi: 10.7150/thno.10202
  63. Xu H, Aguilar ZP, Yang L et al. (2011) Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood.Biomaterials 32(36), 9758–9765
  64. Xu, X., Qin, J., & Liu, W. (2014). Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of PI3K/Akt signaling pathway. Gene, 546(2), 226–232. doi:10.1016/j.gene.2014.06.006
  65. Xu, Z. (2015). Design of protein nanoparticles for cell targeting and blood brain barrier crossing. Universitat Autònoma de Barcelona,.
  66. Yan, Q. L., Gozin, M., Zhao, F. Q., Cohen, A., & Pang, S. P. (2016). Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale, 8(9), 4799-4851.
  67. Yang FF, Huang W, Li YF, et al. (2013). Anti-tumor effects in mice induced by survivin-targeted siRNA delivered through polysaccharide nanoparticles, Biomaterials;22:5689-5699.
  68. Yu, D.-H., Lu, Q., Xie, J., Fang, C., & Chen, H.-Z. (2010). Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. Biomaterials, 31(8), 2278–2292. doi:10.1016/j.biomaterials.2009.11.047
  69. Zhu, W., Lee, S.-J., Castro, N. J., Yan, D.,
  70. Keidar, M., & Zhang, L. G. (2016).
  71. Synergistic Effect of Cold Atmospheric
  72. Plasma and Drug Loaded Core-shell
  73. Nanoparticles on Inhibiting Breast
  74. Cancer Cell Growth. Scientific Reports,
  75. (1). doi:10.1038/srep21974

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a