Nanopartículas: Una prometedora alternativa para el tratamiento del cáncer de seno
Resumen
El cáncer de seno (CS) es una enfermedad común y representa uno de los mayores problemas de salud en el mundo, siendo por ende una preocupación global significativa considerando el alto porcentaje de nuevos casos diagnosticados (2.261.419), y el número de muertes atribuidas a esta enfermedad (684.996) en el 2020. Las decisiones terapéuticas para pacientes con CS, se basan principalmente en la evaluación de parámetros clínicos y patológicos. En particular, la evaluación inmunohistoquímica de factores pronósticos, la clasificación del subtipo tumoral, el marcador de proliferación celular Ki67 y el grado histológico, entre otros, desempeñan un papel importante en la planificación de las estrategias terapéuticas. Sin embargo, aunque este ha sido un enfoque exitoso, algunos pacientes recaen y/o eventualmente desarrollan resistencia. Por lo tanto, el desarrollo de mecanismos de terapia blanco específicos se convierten en una necesidad. Dentro de estos tratamientos, las nanopartículas (NPs) se han constituido en los últimos años, como una prometedora alternativa de terapias dirigidas, ya que permiten potencializar las propiedades farmacocinéticas de los medicamentos. Las NPs pueden brindar una gran oportunidad para tratar el CS, debido a que se aprovechan las características propias del tumor para una eficaz orientación del fármaco con potencial antitumoral. Considerando lo anterior, esta revisión se centra en estudios recientes que destacan el uso de NPs como un sistema prometedor para la administración dirigida de fármacos en el tratamiento de CS.
Palabras clave
Terapia dirigida, Nanotransportadores, Administración de fármacos
Citas
- Aghebati‐Maleki, A., Dolati, S., Ahmadi, M., Baghbanzhadeh, A., Asadi, M.,
- Fotouhi, A., ... & Aghebati‐Maleki, L. (2020). Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. Journal of cellular physiology, 235(3), 1962-1972.
- Anselmo A.C., Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release. 2014;190:15–28. doi: 10.1016/j.jconrel.2014.03.053.
- Aoki, H., Takada, Y., Kondo, S., Sawaya, R., Aggarwal, B. B., & Kondo, Y. (2007). Evidence That Curcumin Suppresses the
- Growth of Malignant Gliomas in Vitro and in Vivo through Induction of Autophagy: Role of Akt and Extracellular Signal-Regulated Kinase Signaling Pathways. Molecular Pharmacology, 72(1), 29–39. doi:10.1124/mol.106.033167
- Bawarski, W. E., Chidlowsky, E., Bharali, D. J., & Mousa, S. A. (2008). Emerging nanopharmaceuticals. Nanomedicine: Nanotechnology, Biology and Medicine, 4(4), 273-282.
- Bazak, R., Houri, M., Achy, S. EL, Hussein, W., & Refaat, T. (2014). Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Molecular and Clinical Oncology, 2(6), 904–908. https://doi.org/10.3892/mco.2014.356
- Berger, A. M., Gerber, L. H., & Mayer, D. K. (2012). Cancer-related fatigue: Implications for breast cancer survivors. Cancer, 118(SUPPL.8), 2261–2269. https://doi.org/10.1002/cncr.27475
- Blanco E., Shen H., Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015;33:941. doi: 10.1038/nbt.3330.
- Brinkman, A. M., Chen, G., Wang, Y., Hedman, C. J., Sherer, N. M., Havighurst, T. C., … Xu, W. (2016). Aminoflavone-loaded EGFR-targeted unimolecular micelle nanoparticles exhibit anti-cancer effects in triple negative breast cancer. Biomaterials, 101, 20–31. doi:10.1016/j.biomaterials.2016.05.041
- Canese, R., Vurro, F., & Marzola, P. (2021). Iron oxide nanoparticles as theranostic agents in cancer immunotherapy. Nanomaterials, 11(8), 1–16. https://doi.org/10.3390/nano11081950
- Carrick, S., Parker, S., Thornton, C. E., Ghersi, D., Simes, J., & Wilcken, N. (2009). Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.cd003372.pub3
- Cheng, C. J., Tietjen, G. T., Saucier-Sawyer, J. K., & Saltzman, W. M. (2015). A holistic approach to targeting disease with polymeric nanoparticles. Nature Reviews Drug Discovery, 14(4), 239–247. doi:10.1038/nrd4503
- Esfandiari, N., Arzanani, M. K., Soleimani, M., Kohi-Habibi, M., & Svendsen, W. E. (2016). A new application of plant virus nanoparticles as drug delivery in breast cancer. Tumor Biology, 37(1), 1229-1236.
- Danhier F. (2016). To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control Rel. 244(Pt A), 108–121. doi: 10.1016/j.jconrel.2016.11.015
- Davis, M. E., Chen, Z., & Shin, D. M. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery, 7(9), 771–782. doi:10.1038/nrd2614
- Dear, R. F., McGeechan, K., Jenkins, M. C., Barratt, A., Tattersall, M. H., & Wilcken, N. (2013). Combination versus sequential single agent chemotherapy for metastatic breast cancer. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.cd008792.pub2
- De Sousa Marcial, S. P., Carneiro, G., & Leite, E. A. (2017). Lipid-based nanoparticles as drug delivery system for paclitaxel in breast cancer treatment. Journal of Nanoparticle Research, 19(10), 1-11.
- Ding, L., Li, J., Huang, R., Liu, Z., Li, C., Yao, S., … Pi, J. (2016). Salvianolic acid B protects against myocardial damage caused by nanocarrier TiO2; and synergistic anti-breast carcinoma effect with curcumin via codelivery system of folic acid-targeted and polyethylene glycol-modified TiO2 nanoparticles. International Journal of Nanomedicine, Volume 11, 5709–5727. doi:10.2147/ijn.s107767
- Dhankhar, R., Vyas, S. P., Jain, A. K., Arora, S., Rath, G., & Goyal, A. K. (2010). Advances in novel drug delivery strategies for breast cancer therapy. Artificial Cells, Blood Substitutes, and Biotechnology, 38(5), 230-249.
- Du, M., Ouyang, Y., Meng, F., Ma, Q., Liu, H., Zhuang, Y., Pang, M., Cai, T., & Cai, Y. (2019). Nanotargeted agents: an emerging therapeutic strategy for breast cancer. Nanomedicine, 14(13), 1771–1786. https://doi.org/10.2217/nnm-2018-0481
- D’souza, A. A., & Shegokar, R. (2016). Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opinion on Drug Delivery, 13(9), 1257–1275. doi:10.1080/17425247.2016.1182485
- Gong, J., Chen, M., Zheng, Y., Wang, S., & Wang, Y. (2012). Polymeric micelles drug delivery system in oncology. Journal of Controlled Release, 159(3), 312-323.
- Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: formation, properties and applications. Soft Matter, 12(11), 2826–2841. doi:10.1039/c5sm02958a
- GLOBOCAN, & WHO. (2018). Mes de sensibilización sobre el cáncer de mama. https://www.who.int/es/news-room/fact-sheets/detail/breast-cancer
- Gumuskaya, B., Alper, M., Hucumenoglu, S., Altundag, K., Uner, A., & Guler, G. (2010). EGFR expression and gene copy number in triple-negative breast carcinoma. Cancer Genetics and Cytogenetics, 203(2), 222–229. doi:10.1016/j.cancergencyto.2010.07.118
- Hahm, E.-R., Gho, Y. S., Park, S., Park, C., Kim, K.-W., & Yang, C.-H. (2004). Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochemical and Biophysical Research Communications, 321(2), 337–344. doi:10.1016/j.bbrc.2004.06.119
- Hanafi-Bojd, M. Y., Jaafari, M. R., Ramezanian, N., Xue, M., Amin, M., Shahtahmassebi, N., & Malaekeh-Nikouei, B. (2015). Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 89, 248-258.
- Haque S.T., Karim M., Abidin S.A.Z., Othman I., Holl M.M.B., Chowdhury E.H. Fe/Mg-Modified Carbonate Apatite with Uniform Particle Size and Unique Transport Protein-Related Protein Corona Efficiently Delivers Doxorubicin into Breast Cancer Cells. Nanomaterials. 2020;10:834. doi: 10.3390/nano10050834.
- Jahan S, Karim ME, Chowdhury EH. Nanoparticles Targeting Receptors on Breast Cancer for Efficient Delivery of Chemotherapeutics. Biomedicines. 2021 Jan 26;9(2):114. doi: 10.3390/biomedicines9020114. PMID: 33530291; PMCID: PMC7910939.
- Jarzyna, P. A., Gianella, A., Skajaa, T., Knudsen, G., Deddens, L. H., Cormode, D. P., Mulder, W. J. M. (2010). Multifunctional imaging nanoprobes. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2(2), 138–150. https://doi.org/10.1002/wnan.72.
- Karra, N., & Benita, S. (2012). The ligand nanoparticle conjugation approach for targeted cancer therapy. Current Drug Metabolism, 13(1), 22–41.
- Kim, J. S., Yoon, T.-J., Yu, K. N., Kim, B. G., Park, S. J., Kim, H. W., … Cho, M. H. (2005). Toxicity and Tissue Distribution of Magnetic Nanoparticles in Mice. Toxicological Sciences, 89(1), 338–347. doi:10.1093/toxsci/kfj027
- Kurmi B.D., Patel P., Paliwal R., Paliwal S.R. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. J. Drug Deliv. Sci. Technol. 2020;57:101682. doi: 10.1016/j.jddst.2020.101682.
- Le, D. H., Lee, K. L., Shukla, S., Commandeur, U., & Steinmetz, N. F. (2017). Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale, 9(6), 2348-2357.
- Liyanage, P. Y., Hettiarachchi, S. D., Zhou, Y., Ouhtit, A., Seven, E. S., Oztan, C. Y., Celik, E., & Leblanc, R. M. (2019). Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica et Biophysica Acta - Reviews on Cancer, 1871(2), 419–433. https://doi.org/10.1016/j.bbcan.2019.04.006
- Lozano-Ocaña Y, Tubón-Usca I, Vaca-Altamirano G, Tubón-Usca G. (2022). Métodos de obtención y aplicación de nanopartículas magnéticas en el tratamiento y diagnóstico del cáncer: una revisión. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 46(178):7-26. doi: https://doi.org/10.18257/raccefyn.1560
- Markman, M., & Mekhail, T. M. (2002). Paclitaxel in cancer therapy. Expert Opinion on Pharmacotherapy, 3(6), 755–766. doi:10.1517/14656566.3.6.755
- Mo R., Jiang T., Gu Z. Recent progress in multidrug delivery to cancer cells by liposomes. Nanomedicine. 2014;9:1117–1120. doi: 10.2217/nnm.14.62.
- Mehrgou, A., & Akouchekian, M. (2016). The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Medical Journal of the Islamic Republic of Iran, 30(1), 1–12.
- Mejía, M., Contreras, A., & Hernández-Carrillo, M. (2020). Calidad de vida en mujeres con cáncer de mama sometidas a quimioterapia en Cali-Colombia. Biomédica, 33(4), 24.
- Morent, R., De Geyter, N., Desmet, T., Dubruel, P., & Leys, C. (2011). Plasma Surface Modification of Biodegradable Polymers: A Review. Plasma Processes and Polymers, 8(3), 171–190. doi:10.1002/ppap.201000153
- Mo R., Jiang T., Gu Z. Recent progress in multidrug delivery to cancer cells by liposomes. Nanomedicine. 2014;9:1117–1120. doi: 10.2217/nnm.14.62.
- Mu, Q., Wang, H., & Zhang, M. (2017). Nanoparticles for imaging and treatment of metastatic breast cancer. In Expert Opinion on Drug Delivery (Vol. 14, Issue 1). https://doi.org/10.1080/17425247.2016.1208650
- Nag O.K., Delehanty J.B. Active cellular and subcellular targeting of nanoparticles for drug delivery. Pharmaceutics. 2019;11:543. doi: 10.3390/pharmaceutics11100543.
- Niazvand, F., Orazizadeh, M., Khorsandi, L., Abbaspour, M., Mansouri, E., & Khodadadi, A. (2019). Effects of Quercetin-Loaded Nanoparticles on MCF-7 Human Breast Cancer Cells. Medicina, 55(4), 114. MDPI AG. http://dx.doi.org/10.3390/medicina55040114
- Oropesa-Nuñez, R., & Jáuregui-Haza, U. J. (2012). Las nanopartículas como portadores de fármacos: características y perspectivas Nanoparticles as drug carriers: characteristics and perspectives. Revista CENIC ciencias biológicas, 43(3).
- Revia, R. A., & Zhang, M. (2016). Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances. Materials Today, 19(3), 157–168. https://doi.org/10.1016/j.mattod.2015.08.022
- Rosenblum D., Peer D. Omics-based nanomedicine: The future of personalized oncology. Cancer Lett. 2014;352:126–136. doi: 10.1016/j.canlet.2013.07.029.
- Salvadormorales, C., Flahaut, E., SIM, E., SLOAN, J., HGREEN, M., & SIM, R. (2006). Complement activation and protein adsorption by carbon nanotubes. Molecular Immunology, 43(3), 193–201. doi:10.1016/j.molimm.2005.02.006
- Senapati, S., Mahanta, A. K., Kumar, S., & Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 3, 7. https://doi.org/10.1038/s41392‐017‐0004‐3.
- Sengupta, S., Eavarone, D., Capila, I., Zhao, G., Watson, N., Kiziltepe, T., & Sasisekharan, R. (2005). Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 436(7050), 568–572. doi:10.1038/nature03794
- Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28–49. doi:10.1016/j.jconrel.2017.03.008
- Shi J., Kantoff P.W., Wooster R., Farokhzad O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer. 2017;17:20. doi: 10.1038/nrc.2016.108.
- Shimada, T.; Ueda, M.; Jinno, H.; Chiba, N.; Wada, M.; Watanabe, J. (2010). Development of targeted therapy with paclitaxel incorporated into EGF-conjugated nanoparticles. Anticancer Res. 29, 1009–1014.
- Soussan E., Cassel S., Blanzat M., Rico-Lattes I. Drug delivery by soft matter: Matrix and vesicular carriers. Angew. Chem. Int. Ed. 2010;48:274–288. doi: 10.1002/anie.200802453.
- Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
- Wang, A. Z., Gu, F., Zhang, L., Chan, J. M., Radovic-Moreno, A., Shaikh, M. R., & Farokhzad, O. C. (2008). Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opinion on Biological Therapy, 8(8), 1063–1070. doi:10.1517/14712598.8.8.1063
- Wang, Z., Luo, P., Dai, S., Liu, Z., Zheng, X., & Chen, T. (2013). Salvianolic Acid B Induces Apoptosis in Human Glioma U87 Cells Through p38-Mediated ROS Generation. Cellular and Molecular Neurobiology, 33(7), 921–928. doi:10.1007/s10571-013-9958-z
- Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016;1:1–12. doi: 10.1038/natrevmats.2016.14.
- World health organization, International agency for research on cancer, G. cancer observatory. (2020). Cancer today view colombia. https://gco.iarc.fr/today/online-analysis-pie?v=2020&mode=cancer&mode_population=continents&population=900&populations=170&key=total&sex=0&cancer=39&type=2&statistic=5&prevalence=1&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=7&group_cancer=1&include_nmsc=1&include_nmsc_other=1&half_pie=0&donut=0#collapse-group-0-1
- Xiang D, Shigdar S, Qiao G et al. (2015). Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics 5(1), 23–42. doi: 10.7150/thno.10202
- Xu H, Aguilar ZP, Yang L et al. (2011) Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood.Biomaterials 32(36), 9758–9765
- Xu, X., Qin, J., & Liu, W. (2014). Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of PI3K/Akt signaling pathway. Gene, 546(2), 226–232. doi:10.1016/j.gene.2014.06.006
- Xu, Z. (2015). Design of protein nanoparticles for cell targeting and blood brain barrier crossing. Universitat Autònoma de Barcelona,.
- Yan, Q. L., Gozin, M., Zhao, F. Q., Cohen, A., & Pang, S. P. (2016). Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale, 8(9), 4799-4851.
- Yang FF, Huang W, Li YF, et al. (2013). Anti-tumor effects in mice induced by survivin-targeted siRNA delivered through polysaccharide nanoparticles, Biomaterials;22:5689-5699.
- Yu, D.-H., Lu, Q., Xie, J., Fang, C., & Chen, H.-Z. (2010). Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. Biomaterials, 31(8), 2278–2292. doi:10.1016/j.biomaterials.2009.11.047
- Zhu, W., Lee, S.-J., Castro, N. J., Yan, D.,
- Keidar, M., & Zhang, L. G. (2016).
- Synergistic Effect of Cold Atmospheric
- Plasma and Drug Loaded Core-shell
- Nanoparticles on Inhibiting Breast
- Cancer Cell Growth. Scientific Reports,
- (1). doi:10.1038/srep21974