UNA UNA PROPUESTA DE ENSEÑANZA-APRENDIZAJE PARA LA COMPUTACIÓN CUANTICA: EMULACIÓN DE UNA COMPUERTA CUANTICA TIPO CNOT Y TOFFOLI POR UN CIRCUITO CLÁSICO
Abstract
A proposal for teaching of quantum computing to students between 12 and 17 years old is proposed, given
that their intellectual activity is at its peak, which contributes significantly to the processes involved in
their learning such as: language, writing, reading among others. A pragmatic approach is established as
a strategy for their literacy. In this framework, the concepts of state, principle of superposition, qubits,
gates, among others, are introduced, proposing the emulation of a quantum gate by a classical circuit,
which allows us to weave ideas that are based on the formalism of quantum computing. Under this context,
the equivalence between the CNOT and Toffoli type gate with a classical circuit is shown in terms of the
logical operation between the input and output of information. The classical circuit emulates the CNOT gate through the | xy >→| x,y⊕x >, with x,y ∈ {0,1}, and to the Toffoli gate through the operation
| q1q2q3 >→| q1,q2,q3⊕(q1 ∧q2) >, with q1,q2,q3 ∈ {0,1}, satisfying the logical operations respectively.
The general structure of the CNOT and Toffoli quantum circuit is described, to then specify the architecture
and operation of the classical circuit followed by the logical operations. Emulation becomes important since
it allows students to get closer to the fundamentals of quantum computing in an alternative and solid way.
Keywords
Classical circuit, CNOT gate, Toffoli gate, logic operations.
References
- M. Nielsen y I. Chuang. I, “Quantum Computation and
- Quantum Information”, 7th ed. Ed. Cambridge University
- Press. Cambridge, United Kingdom. pp. 216-242, 2010.
- A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,
- N.Margolus, p. Shor y H. Weinfurter, “Elementary gates for quantum computation”, Physical Review A, 52(5),
- -3467. doi:10.1103/physreva.52.3457, 1995.
- L. Bao y K. Koenig, “Physics education research for 21st
- century learning. Disciplinary and Interdisciplinary Science
- Education Research”, 1(1), 1-12, 2019.
- R. Restrepo, “Entrelazamiento - Un rompecabezas
- cuántico para todo el mundo. Instituto de FÃsica”, Universidad
- de Antioquia, 1-9, 2014.
- R. Shankar, “Principles of Quantum Mechanics”. New
- York, USA, Kluwer Academic, pp. 107-113, 1980.
- E. Grumbling y M. Horowitz, “National Academies of
- Sciences, Engineering, and Medicine. Quantum Computing:
- Progress and Prospects”.Washington, DC: The National
- Academies Press. doi:https://doi.org/10.17226/25196,
- A. Lawson, “Formal reasoning, achievement,
- and intelligence: An issue of importance”
- Science Education, Obtenido de
- https://api.semanticscholar.org/CorpusID:145250375, 66,
- -83, 1982.
- M. Mykhailova y K. Svore, “Teaching Quantum
- Computing through a Practical Software-driven Approach”.
- En Proceedings of the 51st (ACM) Technical
- Symposium on Computer Science Education. ACM.
- doi:10.1145/3328778.3366952, 2020.
- J. Solbes y V Sinarcas, “Una propuesta para la enseãnza
- aprendizaje de la física cuántica basada en la investigación
- en didáctica de las ciencias ”, Revista de Enseãnza de la
- Física, 23 (1 y 2), pp. 57-84, 2010.
- V. Sinarcas y J. Solbes, “Dificultades en el aprendizaje
- y la enseãnza de la Física Cuántica en
- el bachillerato ”, Enseãnza de las ciencias: revista
- de investigación y experiencias didácticas,
- ttps://raco.cat/index.php/Enseãnza/article/view/285801,
- (3), 9-25, 2013.
- S. Economou, T. Rudolph y E. Barnes, “Teaching
- quantum information science to highschool
- and early undergraduate students”, (ar-
- Xiv:2005.07874). Physics Education (physics.ed-ph).
- doi:https://doi.org/10.48550/arXiv.2005.07874, 2020.
- P. Angara, U. Stege, A. MacLean, H. Müller
- y T. Markham, “Teaching Quantum Computing
- to High-School-Aged Youth: A Hands-On Approach”.
- IEEE Transactions on Quantum Engineering,
- doi:10.1109/TQE.2021.3127503, 3, pp. 1-15 2022.
- R. Castillo, M. Serrano y M. Piattini, “Propuestas sobre
- la enseãnza de la informática cuántica. Actas de las Jenui,
- vol. 5. pp. 277-283, 2020.
- M. Otero, M. Fanaro y M. Arlego “Investigación y desarrollo
- de propuestas didácticas para la enseãnza de la Física
- en la Escuela Secundaria: Nociones Cuánticas, Revista
- Electrónica de Investigación en Educaci
- on en Ciencias , 4(1), pp. 58-74, 2009.
- D. Sabol, A. Leider y J. Glinka, “Quantum Computing
- the Easy Way”Recuperado el 22 de 08 de 2023,
- de https://www.udemy.com/course/quantum-computingthe-
- easy-way/.
- E. Rivera, “El neuroaprendizaje en la enseãnza de las
- matemáticas: la nueva propuesta educativa, ”, Entorno,
- https://doi.org/10.5377/entorno.v0i67.7498, (67), pp. 157-
- , 2019.
- A. Asfaw, “Quantum Computing Education
- Must Reach a Diversity of Students”. Obtenido
- de Inside Quantum Technology News:
- https://www.insidequantumtechnology.com/newsarchive/
- ibm-quantums-education-lead-abe-asfaw-writesquantum-
- computing-education-must-reach-a-diversityof-
- students/, 2020.
- Y. Billig, “Quantum Computing for High School Students”,
- Bellevue, WA, USA: Amazon, 2018.
- S. Zhou, J. Han, K. Koenig, A. Raplinger, Y. Pi, D. Li y
- L. Bao, “Assessment of scientific reasoning: The effects
- of task context, data, and design on student reasoning in
- control of variables. Thinking skills and creativity”, 19,
- pp. 175-187, 2016.
- G. Pantoja, M. Moreira y V. Herscovitz, “La enseãnza
- de conceptos fundamentales de Mecánica Cuántica
- a alumnos de graduación en Física, Revista Electrónica
- de Investigación en Educación en Ciencias,
- (1), doi:https://doi.org/10.54343/reiec.v9i1.151, pp. 22-
- , 2014.
- J. Moore y J. Rubbo, “Scientific reasoning abilities of
- nonscience majors in physics-based courses”, Physical
- Review Special Topics-Physics Education Research, 8(1),
- , 2012.
- A. Ekert, P. Hayden, H. Inamori, “Basic concepts in quantum
- computation”arXiv:quant-ph/0011013v1, 2000.
- M. Rozo, A. Walteros y C. Cortes, “La actividad experimental
- como una parte fundamental para la enseãnza de la
- Física moderna: el caso de la mecánica cuántica, Tecné
- Episteme y Didaxis: TED, Núm 45 pp. 191-206. DOI:
- https://doi.org/10.17227/ted.num45-9846, 2019.
- P. Lambropoulos y D. Petrosvan, “Fundamentals of Quantum
- Optics and Quantum Information”. Springer-Verlag
- Berlin Heidelberg. pp 211-213, 2007.
- J. Gruska, “Quantum Computing”, Osborne McGraw-Hill,
- pp 50-53, 1999.
- U. Khalid, Z. Zilic y K. Radecka, “Emulation of Quantum
- Circuits”. ICCD, 2004 IEEE International Conference on
- Computer Design. San Jose, California, USA. pp. 310-315,
- D. Aharonov, “Quantum Computation”, Annual Reviews
- of Computational Physics VI pp. 259-346, WORLD
- SCIENTIFIC. doi:10.1142/9789812815569-0007, 1998.
- V. Vedral y M. Plenio, “Basics of quantum
- computation”arXiv:quant-ph/9802065, 1998.
- D. Deutsch, “Quantum theory the Church-Turing principle
- and the universal quantum computer”, Proc. R. Soc. Lond.
- A 400, pp. 97-117, 1985.