Skip to main navigation menu Skip to main content Skip to site footer

UNA UNA PROPUESTA DE ENSEÑANZA-APRENDIZAJE PARA LA COMPUTACIÓN CUANTICA: EMULACIÓN DE UNA COMPUERTA CUANTICA TIPO CNOT Y TOFFOLI POR UN CIRCUITO CLÁSICO

Abstract

A proposal for teaching of quantum computing to students between 12 and 17 years old is proposed, given
that their intellectual activity is at its peak, which contributes significantly to the processes involved in
their learning such as: language, writing, reading among others. A pragmatic approach is established as
a strategy for their literacy. In this framework, the concepts of state, principle of superposition, qubits,
gates, among others, are introduced, proposing the emulation of a quantum gate by a classical circuit,
which allows us to weave ideas that are based on the formalism of quantum computing. Under this context,
the equivalence between the CNOT and Toffoli type gate with a classical circuit is shown in terms of the
logical operation between the input and output of information. The classical circuit emulates the CNOT gate through the | xy >→| x,y⊕x >, with x,y ∈ {0,1}, and to the Toffoli gate through the operation
| q1q2q3 >→| q1,q2,q3⊕(q1 ∧q2) >, with q1,q2,q3 ∈ {0,1}, satisfying the logical operations respectively.
The general structure of the CNOT and Toffoli quantum circuit is described, to then specify the architecture
and operation of the classical circuit followed by the logical operations. Emulation becomes important since
it allows students to get closer to the fundamentals of quantum computing in an alternative and solid way.

Keywords

Classical circuit, CNOT gate, Toffoli gate, logic operations.


References

  1. M. Nielsen y I. Chuang. I, “Quantum Computation and
  2. Quantum Information”, 7th ed. Ed. Cambridge University
  3. Press. Cambridge, United Kingdom. pp. 216-242, 2010.
  4. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,
  5. N.Margolus, p. Shor y H. Weinfurter, “Elementary gates for quantum computation”, Physical Review A, 52(5),
  6. -3467. doi:10.1103/physreva.52.3457, 1995.
  7. L. Bao y K. Koenig, “Physics education research for 21st
  8. century learning. Disciplinary and Interdisciplinary Science
  9. Education Research”, 1(1), 1-12, 2019.
  10. R. Restrepo, “Entrelazamiento - Un rompecabezas
  11. cuántico para todo el mundo. Instituto de FÃsica”, Universidad
  12. de Antioquia, 1-9, 2014.
  13. R. Shankar, “Principles of Quantum Mechanics”. New
  14. York, USA, Kluwer Academic, pp. 107-113, 1980.
  15. E. Grumbling y M. Horowitz, “National Academies of
  16. Sciences, Engineering, and Medicine. Quantum Computing:
  17. Progress and Prospects”.Washington, DC: The National
  18. Academies Press. doi:https://doi.org/10.17226/25196,
  19. A. Lawson, “Formal reasoning, achievement,
  20. and intelligence: An issue of importance”
  21. Science Education, Obtenido de
  22. https://api.semanticscholar.org/CorpusID:145250375, 66,
  23. -83, 1982.
  24. M. Mykhailova y K. Svore, “Teaching Quantum
  25. Computing through a Practical Software-driven Approach”.
  26. En Proceedings of the 51st (ACM) Technical
  27. Symposium on Computer Science Education. ACM.
  28. doi:10.1145/3328778.3366952, 2020.
  29. J. Solbes y V Sinarcas, “Una propuesta para la enseãnza
  30. aprendizaje de la física cuántica basada en la investigación
  31. en didáctica de las ciencias ”, Revista de Enseãnza de la
  32. Física, 23 (1 y 2), pp. 57-84, 2010.
  33. V. Sinarcas y J. Solbes, “Dificultades en el aprendizaje
  34. y la enseãnza de la Física Cuántica en
  35. el bachillerato ”, Enseãnza de las ciencias: revista
  36. de investigación y experiencias didácticas,
  37. ttps://raco.cat/index.php/Enseãnza/article/view/285801,
  38. (3), 9-25, 2013.
  39. S. Economou, T. Rudolph y E. Barnes, “Teaching
  40. quantum information science to highschool
  41. and early undergraduate students”, (ar-
  42. Xiv:2005.07874). Physics Education (physics.ed-ph).
  43. doi:https://doi.org/10.48550/arXiv.2005.07874, 2020.
  44. P. Angara, U. Stege, A. MacLean, H. Müller
  45. y T. Markham, “Teaching Quantum Computing
  46. to High-School-Aged Youth: A Hands-On Approach”.
  47. IEEE Transactions on Quantum Engineering,
  48. doi:10.1109/TQE.2021.3127503, 3, pp. 1-15 2022.
  49. R. Castillo, M. Serrano y M. Piattini, “Propuestas sobre
  50. la enseãnza de la informática cuántica. Actas de las Jenui,
  51. vol. 5. pp. 277-283, 2020.
  52. M. Otero, M. Fanaro y M. Arlego “Investigación y desarrollo
  53. de propuestas didácticas para la enseãnza de la Física
  54. en la Escuela Secundaria: Nociones Cuánticas, Revista
  55. Electrónica de Investigación en Educaci
  56. on en Ciencias , 4(1), pp. 58-74, 2009.
  57. D. Sabol, A. Leider y J. Glinka, “Quantum Computing
  58. the Easy Way”Recuperado el 22 de 08 de 2023,
  59. de https://www.udemy.com/course/quantum-computingthe-
  60. easy-way/.
  61. E. Rivera, “El neuroaprendizaje en la enseãnza de las
  62. matemáticas: la nueva propuesta educativa, ”, Entorno,
  63. https://doi.org/10.5377/entorno.v0i67.7498, (67), pp. 157-
  64. , 2019.
  65. A. Asfaw, “Quantum Computing Education
  66. Must Reach a Diversity of Students”. Obtenido
  67. de Inside Quantum Technology News:
  68. https://www.insidequantumtechnology.com/newsarchive/
  69. ibm-quantums-education-lead-abe-asfaw-writesquantum-
  70. computing-education-must-reach-a-diversityof-
  71. students/, 2020.
  72. Y. Billig, “Quantum Computing for High School Students”,
  73. Bellevue, WA, USA: Amazon, 2018.
  74. S. Zhou, J. Han, K. Koenig, A. Raplinger, Y. Pi, D. Li y
  75. L. Bao, “Assessment of scientific reasoning: The effects
  76. of task context, data, and design on student reasoning in
  77. control of variables. Thinking skills and creativity”, 19,
  78. pp. 175-187, 2016.
  79. G. Pantoja, M. Moreira y V. Herscovitz, “La enseãnza
  80. de conceptos fundamentales de Mecánica Cuántica
  81. a alumnos de graduación en Física, Revista Electrónica
  82. de Investigación en Educación en Ciencias,
  83. (1), doi:https://doi.org/10.54343/reiec.v9i1.151, pp. 22-
  84. , 2014.
  85. J. Moore y J. Rubbo, “Scientific reasoning abilities of
  86. nonscience majors in physics-based courses”, Physical
  87. Review Special Topics-Physics Education Research, 8(1),
  88. , 2012.
  89. A. Ekert, P. Hayden, H. Inamori, “Basic concepts in quantum
  90. computation”arXiv:quant-ph/0011013v1, 2000.
  91. M. Rozo, A. Walteros y C. Cortes, “La actividad experimental
  92. como una parte fundamental para la enseãnza de la
  93. Física moderna: el caso de la mecánica cuántica, Tecné
  94. Episteme y Didaxis: TED, Núm 45 pp. 191-206. DOI:
  95. https://doi.org/10.17227/ted.num45-9846, 2019.
  96. P. Lambropoulos y D. Petrosvan, “Fundamentals of Quantum
  97. Optics and Quantum Information”. Springer-Verlag
  98. Berlin Heidelberg. pp 211-213, 2007.
  99. J. Gruska, “Quantum Computing”, Osborne McGraw-Hill,
  100. pp 50-53, 1999.
  101. U. Khalid, Z. Zilic y K. Radecka, “Emulation of Quantum
  102. Circuits”. ICCD, 2004 IEEE International Conference on
  103. Computer Design. San Jose, California, USA. pp. 310-315,
  104. D. Aharonov, “Quantum Computation”, Annual Reviews
  105. of Computational Physics VI pp. 259-346, WORLD
  106. SCIENTIFIC. doi:10.1142/9789812815569-0007, 1998.
  107. V. Vedral y M. Plenio, “Basics of quantum
  108. computation”arXiv:quant-ph/9802065, 1998.
  109. D. Deutsch, “Quantum theory the Church-Turing principle
  110. and the universal quantum computer”, Proc. R. Soc. Lond.
  111. A 400, pp. 97-117, 1985.

Downloads

Download data is not yet available.