Study of the oscillation modes in a Symmetric Physical Pendulum using the effective potential
Abstract
In this paper we present a unified study of the dynamics of the symmetrical physical pendulum in the phase space of the different oscillation modes presented in this system: plane mode, elliptic mode and conic mode, using an effective potential that will depend on the nutation coordinate and also depends parametrically on the energy and angular momentum of the system. We also present a formal deduction of the Allais approximation for the apsidal precession of the symmetrical physical pendulum using the theory of small oscillations around the steady motion or conic oscillation mode.Keywords
Pendulum, Symmetrical physical pendulum, nutation, apsidal precession, oscillation modes, precession
Author Biography
Jose Fernando Hernandez Rosso
Cordoba - Colombia, Física
References
[1] Maya, H., Dinámica del péndulo paracónico en un campo de fuerzas externo de origen gravitacional, Tesis de doctorado, Bogotá, (2014).
[2] Allais, M., The Allais efect and my experiment with the paraconical pendulum, Nasa 1954-1960, París, (1999).
[3] Pugach, A. Goodey, T. and Olenici, D., Correlated anomalous effects observed during the august 1st 2008 solar eclipse, Journal of Advanced Research in Physics, 1(2):021007, (2010).
[4] Saxl, E. and Allen. M., 1970 Solar Eclipse as Seen by a Torsion Pendulum. Phys. Rev. D, 3(4), pag 823-825. (1971).
[5] Murcov, N. Mihaila, I. and Pambuccian, V., On the movement of the Foucault pendulum and the Allais pendulum during the solar eclipse of 3 October 2005.
[6] Ortega, M., Lecciones de Física, Monytex, (2006).
[7] Brizard, A., A primer on elliptic functions with applications in classical mechanics, European Journal of Physics, Vol. 30, pag 729-750. (2009).
[8] Maya, H. Diaz, R. and Herrera, W., Study of the Apsidal Precession of the Physical Symmetrical Pendulum, Journal of Applied Mechanics, Vol. 82, (2015).
[9] Lagrange, J., Mechanique Analytique, 3 ed. Imprimeur-Libraire, Vol. 2,pag 168, Paris, (1885).
[10] Goldstein, H. Poole, C. and Safko, J., Classical Mechanics, 3rd Ed. Addison-Wesley, (2002).