Obtención De Furfural Por Pervaporación Usando Membranas Compuestas Por Silicalita-1 Y Pdms
Resumen
El furfural es un compuesto orgánico utilizado ampliamente en la industria como materia prima para la síntesis de diversos productos químicos. Este compuesto se encuentra sustituido en posición C-2, ofreciendo ventajas en función del tipo de sustituyente y del proceso industrial en el que se aplique. Sin embargo, la obtención de furfural a partir de un medio acuoso hace difícil su separación, siendo este procedimiento muy costoso por técnicas convencionales como la destilación. Por ello, en este trabajo se sintetizaron membranas de polidimetilsiloxano (PDMS) puras y mezcladas con silicalita-1; con el fin de separar furfural desde un medio acuoso de reacción utilizando pervaporación a temperaturas de 40 y 80°C. La obtención de furfural, se llevó a cabo mediante la deshidratación de fructosa usando óxido de niobio (Nb2O5) como catalizador. Las pruebas de separación por pervaporación mostraron selectividad hacia furfural (118,86) a 40°C con membranas libres de silicalita-1 y flux (22,11 g/m²×h) a 80°C con membranas al 80% de silicalita-1. Estos resultados indican que entre el flux y la selectividad se establece una relación inversamente proporcional. Las membranas fueron caracterizadas por espectroscopía infrarroja con transformada de Fourier (FTIR), Difracción de Rayos X (DRX), fisisorción con N2 a 77 K, análisis termogravimétrico (TGA) y microscopía electrónica de barrido acoplada a espectroscopía por dispersión de energía (SEM-EDS) con el fin de establecer correlaciones entre la morfología, estructura y composición de las membranas y su capacidad para separar furfural desde una solución acuosa que contiene también HMF.
Palabras clave
Furfural, Pervaporación, Polidimetilsiloxano, Separación, Silicalita-1
Citas
- E. F. Dunn, D. Liu, and E. Y. X. Chen, “Role of N-heterocyclic carbenes in glucose conversion into HMF by Cr catalysts in ionic liquids”, Appl Catal A Gen, vol. 460–461, pp. 1–7, 2013, doi: 10.1016/j.apcata.2013.04.015.
- Y. Lu, Y. Guo, Y. Zhang, H. Sun, and X. Wu, “Identification and characterization of forced degradation products of 5-hydroxymethyl-2-furaldehyde (5-HMF) by HPLC, LC-LTQ/Orbitrap and NMR studies”, J Pharm Biomed Anal, vol. 233, Sep 2023, doi: 10.1016/j.jpba.2023.115470.
- M. Kabbour and R. Luque, “Furfural as a platform chemical,” Biomass, Biofuels, Biochemicals, pp. 283–297, 2020, doi: 10.1016/B978-0-444-64307-0.00010-X.
- R. Li et al., “Insights into solvent effect on selective production of furfural and 5-hydroxymethylfurfural from fructose”, J Catal, vol. 424, pp. 162–172, Aug. 2023, doi: 10.1016/j.jcat.2023.05.022.
- A. E. Illera et al., “Evaluation of homogeneous and heterogeneous catalytic strategies for furfural production from sugar-derived biomass in a solvent-free green pressurized reaction media (subcritical water-CO2)”, Biomass Bioenergy, vol. 187, p. 107304, Aug. 2024, doi: 10.1016/j.biombioe.2024.107304.
- M. N. Catrinck et al., “One-step process to produce furfural from sugarcane bagasse over niobium-based solid acid catalysts in a water medium”, Fuel Processing Technology, vol. 207, Oct. 2020, doi: 10.1016/j.fuproc.2020.106482.
- Q. Ye et al., “Investigation on the synthesis of furfural via pyrolysis utilizing metal-loaded solid acid catalysts”, J Anal Appl Pyrolysis, vol. 181, Aug. 2024, doi: 10.1016/j.jaap.2024.106656.
- C. Yin, J. He, and S. Liu, “Synthesis of mesoporous silicalite-1 zeolite for the vapor phase Beckmann rearrangement of cyclohexanone oxime”, Microporous and Mesoporous Materials, vol. 307, Nov. 2020, doi: 10.1016/j.micromeso.2020.110517.
- B. Pholjaroen, N. Li, Z. Wang, A. Wang, and T. Zhang, “Dehydration of xylose to furfural over niobium phosphate catalyst in biphasic solvent system”, Journal of Energy Chemistry, vol. 22, no. 6, pp. 826–832, Nov. 2013, doi: 10.1016/S2095-4956(14)60260-6.
- D. Stošić, S. Bennici, V. Pavlović, V. Rakić, and A. Auroux, “Tuning the acidity of niobia: Characterization and catalytic activity of Nb2O5-MeO2 (Me = Ti, Zr, Ce) mesoporous mixed oxides”, Mater Chem Phys, vol. 146, no. 3, pp. 337–345, Aug. 2014, doi: 10.1016/j.matchemphys.2014.03.033.
- G. Liu and W. Jin, “Pervaporation membrane materials: Recent trends and perspectives”, J Memb Sci, vol. 636, p. 119557, Oct. 2021, doi: 10.1016/j.memsci.2021.119557.
- P. D. Chapman, T. Oliveira, A. G. Livingston, and K. Li, “Membranes for the dehydration of solvents by pervaporation”, J Memb Sci, vol. 318, no. 1–2, pp. 5–37, Jun. 2008, doi: 10.1016/j.memsci.2008.02.061.
- J. Fontalvo, P. Cuellar, J. M. K. Timmer, M. A. G. Vorstman, J. G. Wijers, and J. T. F. Keurentjes, “Comparing pervaporation and vapor permeation hybrid distillation processes”, Ind Eng Chem Res, vol. 44, no. 14, pp. 5259–5266, Jul. 2005, doi: 10.1021/ie049225z.
- X. Lu, J. Huang, M. Pinelo, G. Chen, Y. Wan, and J. Luo, “Modelling and optimization of pervaporation membrane modules: A critical review,” J Memb Sci, vol. 664, p. 121084, Dec. 2022, doi: 10.1016/j.memsci.2022.121084.
- R. Castro-Muñoz, F. Galiano, and A. Figoli, “Recent advances in pervaporation hollow fiber membranes for dehydration of organics”, Chemical Engineering Research and Design, vol. 164, pp. 68–85, Dec. 2020, doi: 10.1016/j.cherd.2020.09.028.
- J. Li et al., “Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process,” Bioresour Technol, vol. 169, pp. 251–257, 2014, doi: 10.1016/j.biortech.2014.06.102.
- S. Y. Li, R. Srivastava, and R. S. Parnas, “Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane”, J Memb Sci, vol. 363, no. 1–2, pp. 287–294, Nov. 2010, doi: 10.1016/j.memsci.2010.07.042.
- D. A. Figueroa Paredes et al., “Partial dealcoholization of a Malbec wine through pervaporation with a PDMS membrane: Effect of operation temperature on process economics, volatile aroma composition and sensory properties”, Sep Purif Technol, vol. 335, May 2024, doi: 10.1016/j.seppur.2023.126076.
- R. Hu, Z. Cai, L. Ji, Y. Wu, and X. Ma, “High-flux recovery of aromatic compounds from tobacco extract using an MCM-41/PDMS hybrid membrane”, Sep Purif Technol, vol. 340, Jul. 2024, doi: 10.1016/j.seppur.2024.126822.
- J. Hietaharju, J. Kangas, M. Yang, S. Kuittinen, A. Pappinen, and J. Tanskanen, “Negative impact of butyric acid on butanol recovery by pervaporation with a silicalite-1 membrane from ABE fermentation”, Sep Purif Technol, vol. 245, Aug. 2020, doi: 10.1016/j.seppur.2020.116883.
- N. A. Sánchez-Flores et al., “Silicalite-1, an adsorbent for 2-, 3-, and 4-chlorophenols”, Water Science and Technology, vol. 66, no. 2, pp. 247–253, 2012, doi: 10.2166/wst.2012.073.
- J. Kuhn, S. Sutanto, J. Gascon, J. Gross, and F. Kapteijn, “Performance and stability of multi-channel MFI zeolite membranes detemplated by calcination and ozonication in ethanol/water pervaporation”, J Memb Sci, vol. 339, no. 1–2, pp. 261–274, Sep. 2009, doi: 10.1016/j.memsci.2009.05.006.
- F. S. Kamelian, T. Mohammadi, and F. Naeimpoor, “Fast, facile and scalable fabrication of novel microporous silicalite-1/PDMS mixed matrix membranes for efficient ethanol separation by pervaporation”, Sep Purif Technol, vol. 229, Dec. 2019, doi: 10.1016/j.seppur.2019.115820.
- M. De Bruyn, Z. Sun, and K. Barta, “The thousand faces of Cu-doped porous mixed oxides (Cu-PMO) in the conversion of renewable resources and beyond”, Adv Inorg Chem, vol. 77, pp. 59–98, 2021, doi: 10.1016/bs.adioch.2020.12.002.
- M. J. Antal, W. S. L. Mok, and G. N. Richards, “Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose,” Carbohydr Res, vol. 199, no. 1, pp. 91–109, May 1990, doi: 10.1016/0008-6215(90)84096-D.
- E. I. García-López, F. R. Pomilla, B. Megna, M. L. Testa, L. F. Liotta, and G. Marcì, “Catalytic dehydration of fructose to 5-hydroxymethylfurfural in aqueous medium over nb2o5-based catalysts”, Nanomaterials, vol. 11, no. 7, Jul. 2021, doi: 10.3390/nano11071821.
- R. Li, Q. Lin, J. Ren, X. Yang, Y. Wang, and L. Kong, “Dealuminated Hβ zeolite for selective conversion of fructose to furfural and formic acid”, Green Energy and Environment, vol. 9, no. 2, pp. 311–320, Feb. 2024, doi: 10.1016/j.gee.2022.06.003.
- M. S. Ahmad et al., “Manganese doped graphene oxide: Selective hydrogenation catalyst for converting 5-hydroxymethyl furfural to 5-methyl furfural”, Molecular Catalysis, vol. 553, Jan. 2024, doi: 10.1016/j.mcat.2023.113787.
- R. Castro-Muñoz, F. Galiano, and A. Figoli, “Recent advances in pervaporation hollow fiber membranes for dehydration of organics”, Chemical Engineering Research and Design, vol. 164, pp. 68–85, Dec. 2020, doi: 10.1016/j.cherd.2020.09.028.
- C. A. Godoy, P. Valderrama, A. C. Furtado, and M. Boroski, “Analysis of HMF and furfural in hydrolyzed lignocellulosic biomass by HPLC-DAD-based method using FDCA as internal standard”, MethodsX, vol. 9, Jan. 2022, doi: 10.1016/j.mex.2022.101774.
- Y. Zhuang, Z. Si, S. Pang, H. Wu, X. Zhang, and P. Qin, “Recent progress in pervaporation membranes for furfural recovery: A mini review,” J Clean Prod, vol. 396, p. 136481, Apr. 2023, doi: 10.1016/j.jclepro.2023.136481.
- X. Liu et al., “Metal–organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation”, J Memb Sci, vol. 428, pp. 498–506, Feb. 2013, doi: 10.1016/j.memsci.2012.10.028.
- S. Sawatdiruk, P. Charoensuppanimit, K. Faungnawakij, and C. Klaysom, “POSS/PDMS composite pervaporation membranes for furfural recovery”, Sep Purif Technol, vol. 278, p. 119281, Dec. 2021, doi: 10.1016/j.seppur.2021.119281.
- N. H. Hieu et al., “Recovery of furfural by pervaporation technology using the ceramic tubular supported graphene-polydimethylsiloxane nanocomposite membranes”, FlatChem, vol. 34, p. 100402, Jul. 2022, doi: 10.1016/j.flatc.2022.100402.
- C. Liu et al., “Molecular dynamics simulation and experimental investigation of furfural separation from aqueous solutions via PEBA-2533 membranes”, Sep Purif Technol, vol. 207, pp. 42–50, Dec. 2018, doi: 10.1016/j.seppur.2018.06.029.
- D. Chen et al., “Silicalite-1 zeolites for toluene sorption: Effects of the particle size and intracrystalline mesopores”, Microporous and Mesoporous Materials, vol. 356, Jun. 2023, doi: 10.1016/j.micromeso.2023.112596.
- R. Li et al., “Brønsted acid-driven conversion of glucose to xylose, arabinose and formic acid via selective C–C cleavage”, Appl Catal B, vol. 286, Jun. 2021, doi: 10.1016/j.apcatb.2020.119862.
- J. K. De Andrade, E. Komatsu, H. Perreault, Y. R. Torres, M. R. Da Rosa, and M. L. Felsner, “In house validation from direct determination of 5-hydroxymethyl-2-furfural (HMF) in Brazilian corn and cane syrups samples by HPLC-UV”, Food Chem, vol. 190, pp. 481–486, Jun. 2016, doi: 10.1016/j.foodchem.2015.05.131.
- M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 87, no. 9–10, pp. 1051–1069, Oct. 2015, doi: 10.1515/pac-2014-1117.
- F. López, M. P. Bernal, R. Mallada, J. Coronas, and J. Santamaría, “Preparation of silicalite membranes on stainless steel grid supports,” Ind Eng Chem Res, vol. 44, no. 20, pp. 7627–7632, Sep. 2005, doi: 10.1021/ie048972t.
- H. Robson and K. P. Lillerud, “Silicalite-1”, Verified Syntheses of Zeolitic Materials, Synthesis Commission of the International Zeolite Association, 2016, pp. 292-293