Obtaining Furfural By Pervaporation Using Membranes Composed Of Silicalite-1 And PDMS
Abstract
Furfural is an organic compound widely used in industry as a raw material for the synthesis of various chemical products. This compound is substituted in the C-2 position, offering advantages depending on the type of substituent and the industrial process in which it is applied. However, obtaining furfural from an aqueous medium makes its separation difficult, and this procedure is very expensive using conventional techniques such as distillation. Therefore, in this work, pure polydimethylsiloxane (PDMS) membranes mixed with silicalite-1 were synthesized; in order to separate furfural from an aqueous reaction medium using pervaporation at temperatures of 40 and 80°C. Furfural was obtained by dehydrating fructose using niobium oxide (Nb2O5) as a catalyst. Pervaporation separation tests showed selectivity towards furfural (118.86) at 40°C with silicalite-1-free membranes and flux (22.11 g/m²×h) at 80°C with 80% silicalite-1 membranes. These results indicate that an inversely proportional relationship is established between flux and selectivity. The membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), N2 physisorption at 77 K, thermogravimetric analysis (TGA) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) in order to establish correlations between the morphology, structure and composition of the membranes and their ability to separate furfural from an aqueous solution also containing HMF.
Keywords
Furfural, Pervaporation, Polydimethylsiloxane, Separation, Silicalite-1
References
- E. F. Dunn, D. Liu, and E. Y. X. Chen, “Role of N-heterocyclic carbenes in glucose conversion into HMF by Cr catalysts in ionic liquids”, Appl Catal A Gen, vol. 460–461, pp. 1–7, 2013, doi: 10.1016/j.apcata.2013.04.015.
- Y. Lu, Y. Guo, Y. Zhang, H. Sun, and X. Wu, “Identification and characterization of forced degradation products of 5-hydroxymethyl-2-furaldehyde (5-HMF) by HPLC, LC-LTQ/Orbitrap and NMR studies”, J Pharm Biomed Anal, vol. 233, Sep 2023, doi: 10.1016/j.jpba.2023.115470.
- M. Kabbour and R. Luque, “Furfural as a platform chemical,” Biomass, Biofuels, Biochemicals, pp. 283–297, 2020, doi: 10.1016/B978-0-444-64307-0.00010-X.
- R. Li et al., “Insights into solvent effect on selective production of furfural and 5-hydroxymethylfurfural from fructose”, J Catal, vol. 424, pp. 162–172, Aug. 2023, doi: 10.1016/j.jcat.2023.05.022.
- A. E. Illera et al., “Evaluation of homogeneous and heterogeneous catalytic strategies for furfural production from sugar-derived biomass in a solvent-free green pressurized reaction media (subcritical water-CO2)”, Biomass Bioenergy, vol. 187, p. 107304, Aug. 2024, doi: 10.1016/j.biombioe.2024.107304.
- M. N. Catrinck et al., “One-step process to produce furfural from sugarcane bagasse over niobium-based solid acid catalysts in a water medium”, Fuel Processing Technology, vol. 207, Oct. 2020, doi: 10.1016/j.fuproc.2020.106482.
- Q. Ye et al., “Investigation on the synthesis of furfural via pyrolysis utilizing metal-loaded solid acid catalysts”, J Anal Appl Pyrolysis, vol. 181, Aug. 2024, doi: 10.1016/j.jaap.2024.106656.
- C. Yin, J. He, and S. Liu, “Synthesis of mesoporous silicalite-1 zeolite for the vapor phase Beckmann rearrangement of cyclohexanone oxime”, Microporous and Mesoporous Materials, vol. 307, Nov. 2020, doi: 10.1016/j.micromeso.2020.110517.
- B. Pholjaroen, N. Li, Z. Wang, A. Wang, and T. Zhang, “Dehydration of xylose to furfural over niobium phosphate catalyst in biphasic solvent system”, Journal of Energy Chemistry, vol. 22, no. 6, pp. 826–832, Nov. 2013, doi: 10.1016/S2095-4956(14)60260-6.
- D. Stošić, S. Bennici, V. Pavlović, V. Rakić, and A. Auroux, “Tuning the acidity of niobia: Characterization and catalytic activity of Nb2O5-MeO2 (Me = Ti, Zr, Ce) mesoporous mixed oxides”, Mater Chem Phys, vol. 146, no. 3, pp. 337–345, Aug. 2014, doi: 10.1016/j.matchemphys.2014.03.033.
- G. Liu and W. Jin, “Pervaporation membrane materials: Recent trends and perspectives”, J Memb Sci, vol. 636, p. 119557, Oct. 2021, doi: 10.1016/j.memsci.2021.119557.
- P. D. Chapman, T. Oliveira, A. G. Livingston, and K. Li, “Membranes for the dehydration of solvents by pervaporation”, J Memb Sci, vol. 318, no. 1–2, pp. 5–37, Jun. 2008, doi: 10.1016/j.memsci.2008.02.061.
- J. Fontalvo, P. Cuellar, J. M. K. Timmer, M. A. G. Vorstman, J. G. Wijers, and J. T. F. Keurentjes, “Comparing pervaporation and vapor permeation hybrid distillation processes”, Ind Eng Chem Res, vol. 44, no. 14, pp. 5259–5266, Jul. 2005, doi: 10.1021/ie049225z.
- X. Lu, J. Huang, M. Pinelo, G. Chen, Y. Wan, and J. Luo, “Modelling and optimization of pervaporation membrane modules: A critical review,” J Memb Sci, vol. 664, p. 121084, Dec. 2022, doi: 10.1016/j.memsci.2022.121084.
- R. Castro-Muñoz, F. Galiano, and A. Figoli, “Recent advances in pervaporation hollow fiber membranes for dehydration of organics”, Chemical Engineering Research and Design, vol. 164, pp. 68–85, Dec. 2020, doi: 10.1016/j.cherd.2020.09.028.
- J. Li et al., “Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process,” Bioresour Technol, vol. 169, pp. 251–257, 2014, doi: 10.1016/j.biortech.2014.06.102.
- S. Y. Li, R. Srivastava, and R. S. Parnas, “Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane”, J Memb Sci, vol. 363, no. 1–2, pp. 287–294, Nov. 2010, doi: 10.1016/j.memsci.2010.07.042.
- D. A. Figueroa Paredes et al., “Partial dealcoholization of a Malbec wine through pervaporation with a PDMS membrane: Effect of operation temperature on process economics, volatile aroma composition and sensory properties”, Sep Purif Technol, vol. 335, May 2024, doi: 10.1016/j.seppur.2023.126076.
- R. Hu, Z. Cai, L. Ji, Y. Wu, and X. Ma, “High-flux recovery of aromatic compounds from tobacco extract using an MCM-41/PDMS hybrid membrane”, Sep Purif Technol, vol. 340, Jul. 2024, doi: 10.1016/j.seppur.2024.126822.
- J. Hietaharju, J. Kangas, M. Yang, S. Kuittinen, A. Pappinen, and J. Tanskanen, “Negative impact of butyric acid on butanol recovery by pervaporation with a silicalite-1 membrane from ABE fermentation”, Sep Purif Technol, vol. 245, Aug. 2020, doi: 10.1016/j.seppur.2020.116883.
- N. A. Sánchez-Flores et al., “Silicalite-1, an adsorbent for 2-, 3-, and 4-chlorophenols”, Water Science and Technology, vol. 66, no. 2, pp. 247–253, 2012, doi: 10.2166/wst.2012.073.
- J. Kuhn, S. Sutanto, J. Gascon, J. Gross, and F. Kapteijn, “Performance and stability of multi-channel MFI zeolite membranes detemplated by calcination and ozonication in ethanol/water pervaporation”, J Memb Sci, vol. 339, no. 1–2, pp. 261–274, Sep. 2009, doi: 10.1016/j.memsci.2009.05.006.
- F. S. Kamelian, T. Mohammadi, and F. Naeimpoor, “Fast, facile and scalable fabrication of novel microporous silicalite-1/PDMS mixed matrix membranes for efficient ethanol separation by pervaporation”, Sep Purif Technol, vol. 229, Dec. 2019, doi: 10.1016/j.seppur.2019.115820.
- M. De Bruyn, Z. Sun, and K. Barta, “The thousand faces of Cu-doped porous mixed oxides (Cu-PMO) in the conversion of renewable resources and beyond”, Adv Inorg Chem, vol. 77, pp. 59–98, 2021, doi: 10.1016/bs.adioch.2020.12.002.
- M. J. Antal, W. S. L. Mok, and G. N. Richards, “Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose,” Carbohydr Res, vol. 199, no. 1, pp. 91–109, May 1990, doi: 10.1016/0008-6215(90)84096-D.
- E. I. García-López, F. R. Pomilla, B. Megna, M. L. Testa, L. F. Liotta, and G. Marcì, “Catalytic dehydration of fructose to 5-hydroxymethylfurfural in aqueous medium over nb2o5-based catalysts”, Nanomaterials, vol. 11, no. 7, Jul. 2021, doi: 10.3390/nano11071821.
- R. Li, Q. Lin, J. Ren, X. Yang, Y. Wang, and L. Kong, “Dealuminated Hβ zeolite for selective conversion of fructose to furfural and formic acid”, Green Energy and Environment, vol. 9, no. 2, pp. 311–320, Feb. 2024, doi: 10.1016/j.gee.2022.06.003.
- M. S. Ahmad et al., “Manganese doped graphene oxide: Selective hydrogenation catalyst for converting 5-hydroxymethyl furfural to 5-methyl furfural”, Molecular Catalysis, vol. 553, Jan. 2024, doi: 10.1016/j.mcat.2023.113787.
- R. Castro-Muñoz, F. Galiano, and A. Figoli, “Recent advances in pervaporation hollow fiber membranes for dehydration of organics”, Chemical Engineering Research and Design, vol. 164, pp. 68–85, Dec. 2020, doi: 10.1016/j.cherd.2020.09.028.
- C. A. Godoy, P. Valderrama, A. C. Furtado, and M. Boroski, “Analysis of HMF and furfural in hydrolyzed lignocellulosic biomass by HPLC-DAD-based method using FDCA as internal standard”, MethodsX, vol. 9, Jan. 2022, doi: 10.1016/j.mex.2022.101774.
- Y. Zhuang, Z. Si, S. Pang, H. Wu, X. Zhang, and P. Qin, “Recent progress in pervaporation membranes for furfural recovery: A mini review,” J Clean Prod, vol. 396, p. 136481, Apr. 2023, doi: 10.1016/j.jclepro.2023.136481.
- X. Liu et al., “Metal–organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation”, J Memb Sci, vol. 428, pp. 498–506, Feb. 2013, doi: 10.1016/j.memsci.2012.10.028.
- S. Sawatdiruk, P. Charoensuppanimit, K. Faungnawakij, and C. Klaysom, “POSS/PDMS composite pervaporation membranes for furfural recovery”, Sep Purif Technol, vol. 278, p. 119281, Dec. 2021, doi: 10.1016/j.seppur.2021.119281.
- N. H. Hieu et al., “Recovery of furfural by pervaporation technology using the ceramic tubular supported graphene-polydimethylsiloxane nanocomposite membranes”, FlatChem, vol. 34, p. 100402, Jul. 2022, doi: 10.1016/j.flatc.2022.100402.
- C. Liu et al., “Molecular dynamics simulation and experimental investigation of furfural separation from aqueous solutions via PEBA-2533 membranes”, Sep Purif Technol, vol. 207, pp. 42–50, Dec. 2018, doi: 10.1016/j.seppur.2018.06.029.
- D. Chen et al., “Silicalite-1 zeolites for toluene sorption: Effects of the particle size and intracrystalline mesopores”, Microporous and Mesoporous Materials, vol. 356, Jun. 2023, doi: 10.1016/j.micromeso.2023.112596.
- R. Li et al., “Brønsted acid-driven conversion of glucose to xylose, arabinose and formic acid via selective C–C cleavage”, Appl Catal B, vol. 286, Jun. 2021, doi: 10.1016/j.apcatb.2020.119862.
- J. K. De Andrade, E. Komatsu, H. Perreault, Y. R. Torres, M. R. Da Rosa, and M. L. Felsner, “In house validation from direct determination of 5-hydroxymethyl-2-furfural (HMF) in Brazilian corn and cane syrups samples by HPLC-UV”, Food Chem, vol. 190, pp. 481–486, Jun. 2016, doi: 10.1016/j.foodchem.2015.05.131.
- M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 87, no. 9–10, pp. 1051–1069, Oct. 2015, doi: 10.1515/pac-2014-1117.
- F. López, M. P. Bernal, R. Mallada, J. Coronas, and J. Santamaría, “Preparation of silicalite membranes on stainless steel grid supports,” Ind Eng Chem Res, vol. 44, no. 20, pp. 7627–7632, Sep. 2005, doi: 10.1021/ie048972t.
- H. Robson and K. P. Lillerud, “Silicalite-1”, Verified Syntheses of Zeolitic Materials, Synthesis Commission of the International Zeolite Association, 2016, pp. 292-293