Volatile chemical composition of Colombian Piper gorgonillense Trel. & Yunck. essential oil and its repellent and fumigant activity against Tribolium castaneum Herbst

Main Article Content


Beatriz Eugenia Jaramillo-Colorado https://orcid.org/0000-0003-1708-2367
Flor María Palacio-Herrera https://orcid.org/0000-0001-9106-0161
Cruz Nayive Pino-Benítez https://orcid.org/0000-0001-7471-8697


Essential oils (EOs) are mixtures of volatile organic compounds, mostly terpenes, from the secondary metabolism of plants. These oils exert various activities on insects that damage crops and cause losses worldwide for the economy and agriculture. Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) is one of the main pests causing the loss of a large amount of stored food. The objective of this study was to evaluate the volatile chemical composition of the essential oil from Piper gorgonillense Trel. & Yunck. and its repellent and fumigant activity on T. castaneum. The volatile composition was determined with gas chromatography coupled to mass spectrometry. The majority compounds found in the EO were b-caryophyllene (28.7%), a-copaene (13.5%), and d-cadinene (7.3%). The repellency percentages obtained were 78 and 90% at a concentration of 1% with exposure times of 48 and 72 hours, respectively. The fumigant activity refers to the insecticidal action that an essential oil vapor can have without coming into direct contact with insects; this was 100% at a concentration of EO 350 µg mL-1. The results showed that the P. gorgonillense EO had repellent and insecticidal properties for the biological control of T. castaneum.


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.


Adams, R.P. 2007. Identification of essential oil components by gas chromatography/ mass spectroscopy. 4th ed. Allured Publishing, Carol Stream, IL.

Adamski, Z., S.A. Bufo, S. Chowański, P. Falabella, J. Lubawy, P. Marciniak, J. Pacholska-Bogalska, R. Salvia, L. Scrano, M. Słocińska, M. Spochacz, M. Szymczak, A. Urbański, K. Walkowiak-Nowicka, and G. Rosiński. 2019. Beetles as model organisms in physiological, biomedical and environmental studies. A review. Front Physiol. 10, 319. Doi: 10.3389/fphys.2019.00319

Adarkwah, C., D. Obeng, and S. Prozell. 2018. Toxicity and protectant potential of Piper guineense (Piperaceae) and Senna siamea (Fabaceae) mixed with diatomaceous earth for the management of three major stored product beetle pests. Int. J. Pest Manage. 64, 128-139. Doi: 10.1080/09670874.2017.1346327.

Andrés, M.F., G.E. Rossa, E. Cassel, R.M.F. Vargas, O. Santana, C.E. Díaz, and A. González. 2017. Biocidal effects of Piper hispidinervum (Piperaceae) essential oil and synergism among its main components. Food Chem. Toxicol. 109, 1086-1092. Doi: 10.1016/j.fct.2017.04.017

Athanassiou, C.G., N.G. Kavallieratos, and J.F. Campbell. 2016. Capture of Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae) in floor traps: the effect of previous captures. J. Econ. Entomol. 109(1), 461-466. Doi: 10.1093/jee/tov307.

Chaubey, M.K. 2011. Insecticidal properties of Zingiber officinale and Piper cubeba essential oils against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). J. Biol. Active Prod. Nature 1, (5-6), 306-313. Doi: 10.1080/22311866.2011.10719098

Chellappandian, M., P. Vasantha, S. Senthil, S. Karthi, A. Thanigaivel, A. Ponsankar, and W.B. Hunter. 2018. Botanical essential oils and uses as mosquitocides and repellents against dengue. Environ. Int. 113, 214-230. Doi: 10.1016/j.envint.2017.12.038.

Daglish, G.J., M.K. Nayak, H. Pavic, and L.W. Smith. 2015. Prevalence and potential fitness cost of weak phosphine resistance in Tribolium castaneum (Herbst) in eastern Australia. J. Stored Prod. Res. 61, 54-58. Doi: 10.1016/j.jspr.2014.11.005

Da Silva, J.K.R., L.C. Pinto, R.M.R. Burbano, R.C. Montenegro, E.F. Guimarães, E.H.A. Andrade, and J.G.S. Maia. 2014. Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Ind. Crops Prod. 58, 55-60. 10.1016/j.indcrop.2014.04.006

Da Silva, M.F.R., P.C. Bezerra, C.S. de Lira, A.B.N. de Lima, A.C.A. Neto, E.V. Pontual, and D.M.D. Navarro. 2016. Composition and biological activities of the essential oil of Piper corcovadensis (Miq.) C. DC (Piperaceae). Exp. Parasitol. 165, 64-70. Doi: 10.1016/j.exppara.2016.03.017

De Alfonso, I., S. Vacas, and J. Primo. 2014. Role of α-copaene in the susceptibility of olive fruits to Bactrocera Oleae (Rossi). J. Agric. Food Chem. 62(49), 11976-11979. Doi: 10.1021/jf504821a

De Oliveira-Tintino, C., R.T. Pessoa, M. Fernandes, I. Alcântara, B. Silva, M. Oliveira, A. Martins, M. Silva, S. Tintino, F. Rodrigues, J. Costa, S. Lima, M. Kerntopf, T. Silva, and I. Menezes. 2018. Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St.-Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in in vivo models. Phytomedicine 41, 82-95. Doi: 10.1016/j.phymed.2018.02.004

Flat, R.A., R.T. Cunningham, T.R. Mon, and J.O. John. 1994. Male lures for mediterranean fruitfly (Ceratitis capitata wied.): Structural analogs of α-copaene. J. Chem. Ecol. 20(10), 2595-609. Doi: 10.1007/BF02036194

Gamboa, F., C.C. Muñoz, G. Numpaque, L.G. Sequeda, S.J. Gutierrez, and N. Tellez. 2018. Antimicrobial activity of Piper marginatum Jacq and Ilex guayusa Loes on microorganisms associated with periodontal disease. Int. J. Microbiol. 2018, 4147383-4147392. Doi: 10.1155/2018/4147383.

Govindarajan, M., M. Rajeswary, and G. Benelli. 2016. δ-cadinene, calarene and δ-4-carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Comb. Chem. High Throughput Screen. 19(7), 565-571. Doi: 10.2174/1386207319666160506123520

Guo, X., X. Shang, B. Li, X.Z. Zhou, H. Wen, and J. Zhang. 2017. Acaricidal activities of the essential oil from Rhododendron nivale Hook. f. and its main compund, δ-cadinene against Psoroptes cuniculi. J. Vet. Parasitol. 236, 51-54. Doi: 10.1016/j.vetpar.2017.01.028

Idárraga, A. and R. Callejas. 2011. Análisis florístico de la vegetación del Departamento de Antioquia. In: Idárraga, A., R. del C. Ortiz, R. Callejas, and M. Merello (eds.). Flora de Antioquia: catálogo de las plantas vasculares. vol. II. Listado de las plantas vasculares del departamento de Antioquia. Programa Expedición Antioquia-2103. Series Biodiversidad y Recursos Naturales. Universidad de Antioquia; Missouri Botanical Garden; Oficina de Planeación Departamental de la gobernación de Antioquia, Editorial D’Vinni, Bogota.

Jaramillo-Colorado, B., I. Martelo, and E. Duarte. 2012. Antioxidant and repellent activities of the essential oil from Colombian Triphasia trifolia (Burm. f.) P. Wilson. J. Agric. Food Chem. 60, 6364-6368. Doi: 10.1021/jf300461k

Jaramillo-Colorado, B.E., N. Pino, and A. Gonzalez. 2019a. Volatile composition and biocidal (antifeedant and phytotoxic) activity of the essential oils of four Piperaceae species from Choco-Colombia. Ind. Crops Prod. 138, 111463. 10.1016/j.indcrop.2019.06.026

Jaramillo-Colorado, B.E., S.A. Suarez, and V. Marrugo. 2019b. Volatile chemical composition of essential oil from Bursera graveolens (Kunth) Triana & Planch and their fumigant and repellent activities. Acta Sci. Biol. Sci. 41, e46822. Doi: 10.4025/actascibiolsci.v41i1.46822

Jaramillo, B.E., F.M. Palacio, and E. Duarte. 2020. Antioxidant and biological activities of essential oil from Colombian Swinglea glutinosa (Blanco) Merr fruit. Acta Sci. Biol. Sci, 42, e51639. Doi: 10.4025/actascibiolsci.v42i1.51639.

Kendra, P.E., D. Owens, W.S. Montgomery, T.I. Narvaez, G.R. Bauchan, E.Q. Schnell, N. Tabanca, and D. Carrillo. 2017. α-Copaene is an attractant, synergistic with quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae). PLoS One 12(6), e0179416. Doi: 10.1371/journal.pone.0179416

Kendra, P.E., W.S. Montgomery, E.Q. Schnell, M.A. Deyrup, and N.D. Epsky. 2016. Efficacy of α-copaene, cubeb, and eucalyptol lures for detection of redbay Ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). J. Econ. Entomol. 109(6), 2428-2435. Doi: 10.1093/jee/tow214

Kim, S.-I., J.-S. Yoon, J.W. Jung, K.-B. Hong, Y.-J. Ahn, and H.W. Kwon. 2010. Toxicity and repellency of origanum essential oil and its components against Tribolium castaneum (Coleoptera: Tenebrionidae) adults. J. Asia-Pac. Entomol. 13(4), 369-373. Doi: 10.1016/j.aspen.2010.06.011

Koyama, S., A. Purk, M. Kaur, H.A. Soini M.V. Novotny, K. Davis, C. Kao, H. Matsunami, and A. Mescher. 2019. Beta-caryophyllene enhances wound healing through multiple routes. PLoS ONE 14(12), e0216104. 10.1371/journal.pone.0216104

Kundu, A., S.S. Walia, N.A. Shakil, J. Kumar, and K. Annapurna. 2013. Cadinene sesquiterpenes from Eupatorium adenophorum and their antifungal activity. J. Environ. Sci. Health B. 48(6), 516-22. Doi: 10.1080/03601234.2013.761921

Leite, N.F., C.E. Sobral, R.S. Albuquerque, D.I. Brito, A.K. Lavor, L.B. Alencar, S.R. Tintino, J.V.A. Ferreira, F.G. Figueredo, L.F. Lima, F.A.B. Cunha, A.I. Pinho, and H.D.M. Coutinho 2013. Actividad antiparasitaria in vitro citotóxica de cariofileno y eugenol contra Trypanosoma cruzi y Leishmania brasiliensis. Rev. Cuba. Plantas Med. 18(4), 522-528.

Gomes-Macêdo, C.G., M.Y.N. Fonseca, A.D. Caldeira, S.P. Castro, W. Pacienza, M.P.G. Borsodi, A. Sartoratto, M. Silva, C. Salgado, B. Rossi-Bergmann, and K.C.F. Castro. 2020. Leishmanicidal activity of Piper marginatum Jacq. from Santarém-PA against Leishmania amazonensis. Exp. Parasitol. 210, 107847. Doi: 10.1016/j.exppara.2020.107847

Nararak, J., S. Sathantriphop, and M. Kongmee. 2019. Excito-repellent activity of β-caryophyllene oxide against Aedes aegypti and Anopheles minimus. Acta Trop. 197, 105030. Doi: 10.1016/j.actatropica.2019.05.021

Opit, G.P., T.W. Phillips, M.J. Aikins, and M.M. Hasan. 2012. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 105, 1107-1114. Doi: 10.1603/ec12064

Ordaz, G., H. D’Armas, D. Yáñez, and S. Moreno. 2011. Composición química de los aceites esenciales de las hojas de Helicteres guazumifolia (Sterculiaceae), Piper tuberculatum (Piperaceae), Scoparia dulcis (Arecaceae) y Solanum subinerme (Solanaceae), recolectadas en Sucre, Venezuela. Rev. Biol. Trop. 59(2), 585-595.

Oyemitan, I.A., O.A. Olayera, A. Alabi, L.A. Abass, C.A. Elusiyan, A.O. Oyedeji, and M.A. Akanmu. 2015. Psychoneuropharmacological activities and chemical composition of essential oil of fresh fruits of Piper guineense (Piperaceae) in mice. J. Ethnopharmacol. 166, 240-249. Doi: 10.1016/j.jep.2015.03.004

Parisotto, J., J. Bidone, L.G. Lucca, G. Araújo, M. Falkembach, M. Marques, A. Horn, M. Santos, V. Veiga Jr., R. Limberger, H. Teixeira, C. Dora, and L. Koester. 2020. Healing activity of hydrogel containing nanoemulsified β-caryophyllene. Eur. J. Pharm. Sci. 148, 105318. Doi: 10.1016/j.ejps.2020.105318

Parra, J.E., L.E. Cuca, and A. González. 2019. Antifungal and phytotoxic activity of benzoic acid derivatives from inflorescences of Piper cumanense. Nat. Prod. Res. Doi: 10.1080/14786419.2019.1662010

Plata, A., J. Mendonça Campos, G. Silva Rolim. L.C. Martínez, M. Santos, F. Fernandes, J. Serrão, and J. Zanuncio. 2018. Terpenoid constituents of cinnamon and clove essential oils cause toxic effects and behavior repellency response on granary weevil, Sitophilus granaries. Ecotoxicol. Environ. Saf. 156, 263-270. Doi: 10.1016/j.ecoenv.2018.03.033

Rengifo, A.M., L.M. Muñoz, F.A. Cabezas, and J.A. Guerrero. 2019. Edematic and coagulant effects caused by the venom of Bothrops rhombeatus neutralized by the ethanolic extract of Piper auritum. J. Ethnopharmacol. 242, 112046. Doi: 10.1016/j.jep.2019.112046

Santos, T.G., K. Fukuda, M.J. Kato, A. Sartorato, M.C. Duarte, A.L.T. Ruiz, J. Carvalho, F. Augusto, F. Marques, and B.H.L.S. Maia. 2014. Characterization of the essential oils of two species of Piperaceae by one- and two-dimensional chromatographic techniques with quadrupole mass spectrometric detection. Microchem. J. 115, 113-120. 10.1016/j.microc.2014.02.014

Sauter, I.P., G.E. Rossa, A.M. Lucas, S.P. Cibulski, P.M. Roehe, L.A.A. da Silva, M. Rott, R. Vargas, E. Cassel, and G.L. von Poser. 2012. Chemical composition and amoebicidal activity of Piper hispidinervum (Piperaceae) essential oil. Ind. Prod. Crops. 40, 292-295. Doi: 10.1016/j.indcrop.2012.03.025.

Scott, I.M., H.R. Jensen, B.J. Philogène, and J.T. Arnason. 2008. A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochem. Rev. 7(1), 65. Doi: 10.1007/s11101-006-9058-5.

Singh, P. and A.K. Pandey. 2018. Prospective of essential oils of the genus Mentha as biopesticides: A review. Front. Plant Sci. 9, 1295. Doi: 10.3389/fpls.2018.01295

The Plant List. 2013. Version 1.1. Piper gorgonillense. Dabase in: http://www.theplantlist.org/tpl1.1/record/tro-50088832; consulted: April, 2020.

Wu, W., F. Liu, and R.W. Davis. 2018. Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds. Metab. Eng. Commun. 6, 13-21. Doi: 10.1016/j.meteno.2018.01.001

Xu, G.L., D. Geng, M. Xie, K.Y. Teng, Y.X. Tian, Z.Z. Liu, C. Yan, Y. Wang, X. Zhang, Y. Song, Y. Yang, and G.M. She. 2015. Chemical composition, antioxidative and anticancer activities of the essential oil: Curcumae Rhizoma-Sparganii Rhizoma, a traditional herb pair. Molecules 20(9), 15781-15796. 10.3390/molecules200915781

Zhang, Z., Y. Xie, Y. Wang, Z. Lin, L. Wang, and G. Li. 2017. Toxicities of monoterpenes against housefly, Musca domestica L. (Diptera: Muscidae). Environ. Sci. Pollut. Res. 24(31), 24708-24713. Doi: 10.1007/s00436-012-3105-5


Download data is not yet available.